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Abstract In this paper we analyse the conditions for attributing to Al autonomous
systems the ontological status of “artificial moral agents”, in the context of the “dis-
tributed responsibility” between humans and machines in Machine Ethics (ME).
In order to address the fundamental issue in ME of the unavoidable “opacity” of
their decisions with ethical/legal relevance, we start from the neuroethical evidence
in cognitive science. In humans, the “transparency” and then the “ethical account-
ability” of their actions as responsible moral agents is not in contradiction with the
unavoidable “opacity” (unawareness) of the brain process by which they perform their
moral judgements on the right action to execute. In fact, the moral accountability of
our actions depends on what is immediately before and after our “moral judgements”
on the right action to execute (formally, deontic first order logic (FOL) decisions).
Le., our moral accountability depends on the “ethical constraints” we imposed to
our judgement before performing it in an opaque way. Anyway, our moral account-
ability depends overall on the “ethical assessment” or explicit “moral reasoning”
after and over the moral judgement before executing our actions (deontic higher
order logic (HOL) assessment). In this way, in the light of the AI “imitation game”,
the consistent attribution of the status of ethically accountable artificial moral agents
to autonomous Al systems depends on two similar conditions. Firstly, it depends on
the presence of “ethical constraints” to be satisfied in their Machine Learning (ML)
supervised optimization algorithm during its training phase, to give the system ethical
skills (“competences”) in its decisions. Secondly — and definitely—, it depends on
the presence in an Al autonomous system of a deontic HOL “ethical reasoner” to
perform an automatic, and fully transparent assessment (metalogical deontic valu-
ation) about the decisions taken by the ethically skilled ML algorithm about the
right action to execute, before executing it. Finally, we show that the proper deontic
FOL and HOL for this class of artificial moral agents is Kripke’s modal relational
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logic, in its algebraic topological formalization. This is naturally implemented in the
dissipative QFT unsupervised deep learning of our brains, based on the “doubling
of the degrees of freedom” (DDF), and then in the so-called “deep-belief” artificial
neural networks for the statistical data pre-processing. This unsupervised learning
procedure is also compliant with the usage of the “maximin fairness principle”, used
as a balancing aggregation principle of the statistical variables in Sen’s formal theory
of fairness.

Keywords Machine ethics + Deep learning opacity - Higher order deontic
reasoners - Relation ethics - Biased statistical data + Deep-belief neural networks *
Fair machine learning
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FOL First-Order Logic

HOL Higher-Order Logic
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1 Introduction: The Ethics of Artificial Intelligence
and the Machine Ethics

1.1 The Distributed Responsibility Humans-Machines
in Artificial Intelligence

Recently, L. Floridi and M. Taddeo introduced into the wide debate about ethics in
Al the notion of distributed responsibility between humans (designers, developers,
users), on the one hand, and machines (software and hardware), on the other hand:
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The effects of decisions or actions based on Al are often the result of countless interactions
among many actors, including designers, developers, users, software, and hardware. This is
known as distributed agency. With distributed agency comes distributed responsibility. [1,
p- 751]

More recently, one of us proposed to redefine the notion of “distributed responsibility”
between humans and machines, by distinguishing between the slow responsibility of
conscious ethical agents such as humans, and the fast responsiveness of unconscious
skilled moral agents such as machines with respect to the ethical constraints from the
shared social environment [2]. This distinction extends to Machine Ethics (ME) a
similar distinction used already in Neuroethics (NE) as to the relationship between the
slowness of consciousness with respect to the fastness of the related neural processes
of the human person agency [3, 4]. Indeed, it is the person (i.e., the individual-in-
relationship with her physical-social environment) and neither her mind, nor her
brain taken in isolation the proper subject of morally/legally accountable actions [5,
6] (see Sect. 2.1).

Effectively, the main problem at issue about the actual challenges in moral philos-
ophy related to NE, and Artificial Intelligence (Al) is similar. “Who is the actor of
a moral act?” or, using the title of a famous M. S. Gazzaniga’s book: “Who is in
charge” [7]. Now, as N. Levy' emphasized, what NE teaches us is that neither the
conscious mind of a human person, nor some part of her brain such as the lobes
of the prefrontal cortex, as far as both taken in isolation, can be considered as the
“controller” of the human behavior.

We needn’t fear that giving up on a central controller requires us to give up on agency,

rationality, or morality. We rightly want our actions and thoughts to be controlled by an

agent, by ourselves, and we want ourselves to have the qualities we prize. But the only thing

in the mind/brain that answers to the description of an agent is the entire ensemble: built up

out of various modules and sub-personal mechanisms. And it is indeed the entire agent that
is the controller of controlled processes. [8, p. 41]

In this sense, the same N. Levy suggests that Al systems, as far as considered as
artificial extensions of the human natural intelligence can be considered among these
sub-personal mechanisms and modules, in the framework of the so-called extended
mind hypothesis in cognitive neurosciences (see [8, pp. 29—44]).

1.2 Al Subjects of Moral Agency and the Machine Ethics

However, V. C. Miiller well emphasizes in his recent review paper on Ethics of
Artificial Intelligence and Robotics [9] that considering Al systems as simple exten-
sions of the human intelligence covers only one trend of the actual debate about the

! Neil Levy is professor at the University of Oxford where he is also Director of The Oxford Uehiro
Centre for Practical Ethics that has in “Neuroethics” and in “Al and Digital Ethics” two of the
main topics of research. We emphasize in this paper the strict relationship between these two
research fields, because both have as object the physical bases of ethics (effectively, of deontic logic
information processing) respectively in natural and artificial neural systems.
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ethics in Al. Namely, the trend concerning the Al systems as objects, that is, as tools
made and used by humans (individuals, companies, private and public institutions,
etc.) as indispensable support of the human decision-making for the management of
extremely large bases of data (“big-data”).

The other trend that is more relevant for the ME debate concerns the Al systems
as subjects and then as artificial moral agents. l.e., as autonomous systems able to
make fast decisions escaping the slow conscious human control but affecting our
individual and social lives and then with evident ethical/legal consequences of their
decisions. Evidently, these artificial moral agents require that they satisfy a suitable
ethical/legal accountability of their decisions just in the way it happens for the human
moral agents.

Therefore, following Miiller’s useful distinction, we have

Ethical issues that arise with Al systems as objects, i.e., tools made and used by humans.
This includes issues of privacy and manipulation, opacity and bias, human-robot interaction,
automation and employment, and the effects of autonomy. Then Al systems [can be consid-
ered also] as subjects requiring an ethics for the Al systems themselves in machine ethics
and artificial moral agency. [9, p. 1]

More analytically the main ethical issues in Al concern:

1. Issues about privacy and data manipulation. They are the more discussed and
easier to be understood. Al systems are applied wherever there are large databases
(“big-data”) whose management is impossible for humans, and which now
with the progressive informatization of any aspect of our personal, social, and
economic lives, concern the sensitive data of all of us.

e What perhaps escapes most and it is paradoxical but true, is that these systems,
by profiling us and cross-relating the data concerning us every time we use
Internet or our smartphones, make an online purchase, access a database,
request an online document, or simply we use an internet search engine,
they know our habits, attitudes and preferences much better than we know
ourselves.

e These profiles are accessible to others and not to us, which creates a big
ethical-legal problem that we should sooner or later face as individuals and
as governments. In fact, these profiles are used systematically in the creation
of fakes to influence specific groups of people, with serious problems on the
autonomy of choices not only in the economic-commercial field, but also in
the political-social field.

e Representative democracies like ours no longer work if the citizen choices
are systematically conditioned in a subtle but real way. Burying our heads in
the sand as we are doing does not solve the problem but exacerbates it. And
this constitutes a real problem for Western democracies in that undeclared but
effective war between democratic and autocratic regimes, in which we are all
sadly involved since many years (see [10] for further discussions).

2. Issues about opacity and bias in the statistical data processing. As it is well
known, the classic expert systems in the automatic processing and classification of
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datarelated to the so-called “symbolic approach to AI”’ (see Sect. B2 in Appendix
B) do not suffer from this kind of problems. On the contrary, the much more
powerful Al systems that include machine learning (ML) algorithms based on
multilayer architectures of neural networks (the so-called “deep-learning”: see
Sects. B4-B7 in Appendix B) systematically suffer from an unavoidable problem
of opacity in data processing. Because of their relevance, these two strictly related
issues are the main object of our paper (see Sects. 2 and 3).

e In expert systems of the symbolic Al, indeed, the inferential trees for data
classification are defined by the programmer and therefore the path followed
by the system to reach the final decision can be always reconstructed and
therefore it is controllable, or “transparent”.

e This is systematically impossible in ML models based on multilayer neural
networks, which moreover necessarily emphasize “biases” or “negative
propensions” towards certain groups or types of individuals—generally
minorities—eventually present in the statistical data on which the training of
the system is carried out. This raises “significant concerns about lack of due
process, accountability, community engagement and auditing” in Al systems
for automated decision support [11, p. 18ff] and it requires the necessity of
inserting into the unsupervised pre-processing of the training set in ML algo-
rithms fairness criteria to correct these distortions, as we discuss below (see
Sects. 3.2, B7 in Appendix B, and Sect. D2 in Appendix D).

3. Issues about the human—robot interaction. Although still not too obvious to many
compared to the previous problems, it is an emerging ethical-legal issue, which
will become increasingly relevant, as robot usage will be spread on a very large
scale.

e Robots—including self-driving aerial and ground vehicles—are indeed
destined to support or even replace humans in industry, communications,
services (e.g., automatic call centers), surgery (surgical robots), high-risk
rescue operations, and increasingly in military operations (armed drones,
robot-soldiers, robotic artillery, etc.), all specific fields where they are already
widespread. Their usage will increase also in many other applications that
affect the lives of all of us (think at self-driving cars), even the more fragile.
On this regard, think at robot applications in the nursing care, in the domestic
care, and even in the educational care (i.e., the distance teaching systems
endowed with Al engines for readapting themselves to the individual student
needs).

4. Issues related to autonomous systems and the ME. It is evident that the discussion
about Al systems as “subjects of moral agency” and then as “artificial moral
agents” in ME concerns essentially Al systems, as far as displaying different
degrees of autonomy in their decision making, with respect to the human control.
As Miiller properly recalls,
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There are several notions of autonomy in the discussion of autonomous systems. A
stronger notion is involved in philosophical debates where autonomy is the basis for
responsibility and personhood [12]. In this context, responsibility implies autonomy, but
not inversely, so there can be systems that have degrees of technical autonomy without
raising issues of responsibility. The weaker, more technical, notion of autonomy in
robotics is relative and gradual. A system is said to be autonomous with respect to
human control to a certain degree. There is a parallel here to the issues of bias and
opacity in Al since autonomy also concerns a power-relation: who is in control, and
who is responsible? [9, pp. 24-25]

e The examples made by Miiller of Al autonomous systems about which the
moral issues are object of fierce debates, both from a technical point of view,
and from an ethical and juridical perspective are the “self-driving cars” and the
“autonomous weapon systems” (AWS, e.g., armed drones and robot-soldiers)
(see [9, pp. 24-29] and the quoted literature about these topics). They are
examples of high relevance and actuality for our society.

e Of course, ME—namely, “the ethics for machines as subjects, rather than for
the human use of machines as objects”—is strictly related to the issues of
autonomy and opacity in Al systems. That is, using a quotation of V. Dignum
in Miiller’s paper [9, p. 30], ME is concerned with the ambitious constraints
that:

Al reasoning should be able to take into account societal values, moral and ethical
considerations; weigh the respective priorities of values held by different stake-
holders in various multicultural contexts; explain its reasoning; and guarantee
transparency. [13, pp. 1-2]

1.3 A Scheme of This Contribution

The last two quotations of Miilller and Dignum help us to define better what we mean
by the autonomy of Al systems intended as subjects of moral agency. Then they
help us for defining properly the notion of distributed moral responsibility between
humans and machines in terms of the distributed ethical/legal accountability for the
rest of the society of their decisions/actions because concerning the life and welfare
of persons. To sum up, in the case of autonomous Al systems, we must speak about
the distributed ethical/legal accountability between conscious moral subjects and
artificial moral subjects.”

2 In this connection, it is useful to recall that the notion of responsibility/accountability in moral
philosophy is also etymologically related to the notion of “responding/accounting to someone else”
for our actions. Or, in the formal terms of the deontic logic, the notion of responsibility consists in
Jjustifying the consistency of our actions with respect to the obligations of norms ruling our behaviors,
for satisfying a given system of values. L.e., a heterarchy (= a hierarchy in which the ordering can
change [115]) of individual/common goods to be pursued which are shared by the members of a
given community. In this sense, in the computational implementation of deontic logic calculations
in autonomous Al systems making them artificial moral agents, it makes sense speaking about the
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As a premise, it is significant for our aims Miiller’s distinction between the “philo-
sophical”—effectively, anthropological—and the “technical” notions of autonomy
and control in humans and machines.

On the one hand, autonomy and control are essential components of the human
personhood. Indeed, we can define the personal free-will of humans as “the capability
of a human person of controlling at different levels her own behavior, in view of the
effective pursuing of a given goal (value) by suitable decisions/actions” (see [5],
Chap. 5) and/or in Amartya Sen’s terms “in view of the effective pursuing of a
valued and valuable state/way of living” [14, p. 356].

On the other hand, the “relative and gradual” autonomy of Al systems/robots
with respect to the human control is strictly related to what Miiller defines as the
“technical” notion of control in artificial systems. This effectively refers to the basic
notions of Cybernetics, or “(Theory of) Communication and Control in Animals and
Machines”, according to the title of famous Norbert Wiener’s book [15]. In Sect. Al
of the Appendix A we recall briefly which are the three main levels of active control
in biological and artificial systems, emphasizing that the autonomy of Al Systems
with respect to the human control reaches its higher level when it concerns the same
ultimate level of the goals supervising the behavior. This is strictly related to the
implementation into the decision processes of Al autonomous systems—before all
in the ML optimization process—of deontic logic constraints as necessary condition
for attributing them the ontological status of artificial moral agents (see Sect. A2 in
Appendix A).

Therefore, main object of this contribution is a theoretical justification of the
attribution of the ontological status of artificial moral agents to autonomous Al
systems in ME by a systematic comparison, in the light of the Turing Test, to the
human persons as conscious moral agents.

More precisely, an adequate connotation or “descriptive definition” of the
autonomous Al systems that justifies, in a logically and ontologically consistent
way, our reference to them, as artificial moral agents, requires the fulfilment of the
following steps that we will examine in the rest of the article. Even though, for
not burdening our discussion, the steps 1-3 that refer to the background knowledge
necessary for defining the notion of “autonomous Al systems” will be treated in the
Appendix A and in the Appendix B of this paper.

1. A connotation of the ethical decision-making autonomy of humans and machines
within the already introduced notion of active control, which is what distinguishes
biological and artificial systems from mechanical systems as passive control
systems (see Appendix A).

2. A connotation of the ethical decision-making autonomy of humans and machines
in the framework of the cognitive science triangulation among (a) the intentional
states of the subjective mind, as such inaccessible to other people; (b) the physical
(neurophysiological) states to which they are necessarily related; (c) the logical
operations implementable in (b), which expresses (behaviorally/linguistically)

satisfaction of ethical constraints from the social environment they share with humans (see Sect. 2
and Appendix A for more details).
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the “intelligence” both cognitive and moral of (a), and hence makes it imitable
by suitable Al system models (see Sect. B1 in Appendix B).

3. A connotation of the ethical decision-making autonomy of humans and machines
in the context of the Turing imitation test that is at the origin of the Al research
program. With the consequent distinction between: (a) the symbolic Al systems
or “expert systems” because they simulate in the explicit inference tree of a
program the ability of a human expert (see Sect. B2 in Appendix B); and (b)
The pre-symbolic Al systems because they are equipped with ML algorithms
based on different models of multilayered ANNs (deep-learning). Indeed, the
vastness of the databases (big-data) on which they apply excludes its treatability
by any human expert, making these systems indispensable to our society (see
Sects. B3—-B7 in Appendix B).

Now, precisely this class of autonomous Al systems endowed with multilayered ML
models display the problems of opacity and unfairness in their decision processes
that, as we anticipated in Sect. 1.2, are the two main issues to solve in ME (see item 2
in the list). Therefore, in the next two Sections of this work, these two problems and
their possible solutions in ME are discussed. In other words, the proper attribution of
a subjective moral agency to autonomous Al systems in comparison with the moral
agency of the human subjects requires the fulfillment of these further two steps:

4. A connotation of the ethical decision-making autonomy of humans and machines,
and of their accountability, despite the intrinsic opacity of the decision processes
in both. In other terms, the two conditions of transparency that the human moral
agents must satisfy to grant the ethical/legal accountability of their decisions/
actions when they concern the life and the welfare of other persons, despite
the intrinsic opacity of the human decision processes must be satisfied also by
autonomous Al systems in similar conditions. To the illustration of this funda-
mental opacity issue and of its solution both in humans and machines is devoted
the Second Section of this paper.

5. A connotation of the ethical decision-making autonomy of humans and machines
as able to perform fair moral judgements/decisions, so overcoming the discrimi-
nations towards persons and groups present in the linguistic/social/cultural envi-
ronments of which they are parts. To this issue in ML models and to its possible
solution according to Amartya Sen’s theory of “justice as fairness” we dedicate
the Sect. 3 of our paper and the related Appendixes C and D.
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2 The Autonomy and the Opacity Issues in Machine Ethics
and the “Imitation Game” in the AI Research Program

2.1 The Contribution of Neuroethics to Solve the Problem

In this section we discuss mainly the issue of how granting the ethical/legal right
to transparency with respect to the decisions of autonomous Al systems if this
transparency is technically impossible in these systems.

To solve this typical conundrum of the “distributed responsibility” humans-
machines, the extension to Al systems of the neuroethical distinction between the fast
unconscious responsiveness of our brains to environmental constraints and the slow
conscious responsibility of our minds becomes essential.® For this aim, it is useful to
report here the following example used by N. Levy in his book about the relationship
between consciousness and moral responsibility in cognitive neurosciences, in the
light of neuroethics (NE) [6]. The example concerns the issue of the moral respon-
sibility of a highly skilled—very well “trained”, indeed—human driver such as the
famous racing driver Ayrton Senna.

It is characteristic of conscious processes that they are much slower than nonconscious;
the rapid responsiveness of highly skilled agents like (...) Senna must certainly be driven
by the latter and not the former. It therefore seems false that agents must be conscious of
the information they respond to in order to be responsible for how they respond to it. (...)
Direct moral responsibility requires that a creature conscious agent be conscious of the moral
significance of their actions. [6, pp. 114—121] (Italics are ours)

In this way, Levy introduces into the neuroethical debate the fundamental distinction
between the moral responsibility of conscious communication agents such as human
persons, versus the fast responsiveness of their brains. But also, versus the (much
faster) responsiveness of Al decision supports we use, which can be both (brains and
machines) included in the category of sub-personal modules of actions for which we,
as persons, are morally responsible.

This distinction, however, can also shed light on the issue of autonomous Al
systems equipped with ML, understood not as objects but as unconscious subjects
of morally relevant decisions, or more precisely as highly trained artificial moral
agents, through ML techniques—think at self-driving cars—, destined to become a
significant part of our society.

In other words, in his book Levy emphasizes that in the human production both of
cognitive and of moral judgements—formally, logical valuations/decisions “true/
false” (1/0), in alethic and deontic modal logics, respectively (see Sect. A2 in
Appendix A)—what is “transparent”, i.e., conscious to us and eventually “trans-
parent” and then “accountable” to others, is what is before and after the production
of the judgement (decision) itself that as such is absolutely unconscious and then

3 The implicit reference is to the neurophysiological evidence that the action potentials of the neuron
circuits involved in an intentional decision/action in human brains reach their maximum some till
some tenths of seconds before the conscious component of an intentional state (see [3]).
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“opaque” to everybody, just as it happens to autonomous Al systems endowed with
deep ML.

In this sense, we can say that these systems with their intrinsic opacity are “the
winners” of the “imitation game” [16] on which the Al research program is based
since its origins in 1956 [17], much more than the symbolic Al systems, whose
decision process is generally “transparent”.

Indeed, when we produce a moral judgement about an action and/or a choice
that we must execute, what is “conscious” (“transparent” to us, and eventually to
others as far as we communicate it) is only what precedes and follows the moral
judgement/decision as such. Indeed, we can distinguish three steps in any human
moral judgement/decision (see [5], Chap. 5 for more details):

1. At first, we consciously examine the different components of the action/choice
that we are going to evaluate by a moral judgement over it. That is, we consider
mainly the past similar situations, the actual concrete situation, the future practical
consequences of our action/choice, and of course also the abstract moral norms
that should rule our action.

2. Afterward, by combining through an unconscious process these and other compo-
nents not considered at the first step (before all emotions, as NE taught us [18]),
we produce our moral judgement (i.e., we make our deontic first order (FO)
evaluation) about the action/choice we want to execute.

However, being truly responsible of the moral significance of our actions requires
that, before executing our action/choice,

1. As a third step, we make consciously a sort of “moral auditing to ourselves”
about our moral judgement (i.e., we perform a deontic higher order logic
(HOL) reasoning/assessment) for evaluating whether effectively this judgement/
decision (deontic first order logic (FOL) decision) we produced about the right
action to execute, satisfies all the moral constraints we imposed to it—and even-
tually other moral constraints we did not consider. Our moral responsibility
becomes in such a way an act of “transparent” moral accountability for justifying/
explaining also to others and not only to ourselves the morality of our decisions/
choices. Formally, this “moral auditing” of our moral judgement/decision about
the action to execute is a “valuation of our valuation”, that is, it consists into a
metalogical evaluation of our deontic FOL decision process, requiring formally
a deontic HOL (see [19] and the Conclusions of this contribution).*

4 Formally, only Kripke’s relational semantics in mathematical modal logic in its algebraic (topo-
logical) interpretation of a modal Boolean algebra with operators (modal BAO) (see Sect. D1 in
Appendix D) admits both FOL local semantics, and HOL rotal semantics, given that Boolean logic
is the only “guarded decidable fragment” of FOL. Indeed, the semantics of a Boolean algebra
requires partially ordered sets defined on a topological Stone space [55], and then it can be defined
also on Non-wellfounded (NWF) sets [32, 62]. In them, no total set ordering is admitted but several
set trees of partially ordered sets sharing the same root (see [89] for further details). The usage of
NWPF-sets is of course compliant for implementing models of deontic logics for a pluralistic society
like ours, characterized by different partial orderings of ethical values (see Sect. A2 in Appendix
A).
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In this way, we, as conscious moral agents, can fully satisfy the moral/legal account-
ability to the social community of our decisions/choices/actions, because only at this
third step we are able of formally justifying/explaining the morality/legality of our
decisions/actions/choices. At the same time, we also satisfy in this way the right-to-
transparency to other human subjects, whose lives are eventually influenced by our
decisions/choices/actions.

2.2 The Double Condition to Satisfy for a Consistent
Attribution of an Accountable Moral Agency to Al
Systems in Machine Ethics

To sum up, the solution of the fundamental issue in ME of how attributing consistently
moral agency to artificial unconscious agents, and specifically to highly trained Al
systems requires that they satisfy two conditions:

1. The “transparent” implementation in the supervised ML algorithms of ethical/
legal constraints. That is, error minimization algorithms satisfying also ethical
conditions [20]. In this sense, the so-called “consequentialist” or “value based”
approach to deontic logic [21] seems to be more suitable for being directly imple-
mented in ML algorithms since in both cases a cost function is to be minimized,’
than the so called “virtue ethics” approach [22]. Indeed, the value ethics is also
denoted as consequentialist because formally satisfying the following modal
logic scheme: “if you want to pursue factually this goal (value), you must do
this”. For instance, in the case of Al autonomous systems for trading in the
financial markets—now covering a larger part of fast trading operations (about
40%) all over the world—a “good” ML algorithm for trading means that it is not
based only on the maximization of profit, but also on the satisfaction of given
ethical clauses (e.g., investments not deriving from illegal origins, not based
on the exploitation of the workers, etc.). Finally, the value-based deontic logic
is compliant also with the implementation of “fairness conditions” in the data
pre-processing by an unsupervised ML, for avoiding the unwanted “bias” in
the training data set of supervised ML, leading to “unfair” decisions of the ML
algorithm based on biased data (see [23, 24] and below Sect. 3.2).

2. The implementation in autonomous Al systems of an automatic ethical/legal
auditing to check in a transparent way whether the decisions taken by the system
effectively meet the ethical criteria set in the ML algorithm. And/or, in the case of
symbolic Al systems, the ethical criteria implemented in the decision tree of the
program. Only recently the researchers in Al started to study this fundamental

5 On this regard, see below Sect. A2 in Appendix A, where it is evident that the ethical obligation
in a “value ethics” requires the satisfaction of an optimization (maximization) condition.
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component of ME, requiring a HOL for a metalogical valuation of the effective-
ness of the deontic logic algorithms implemented in the ML program and/or in
the inferential tree of symbolic Al systems (see [19] and below Sect. 2.3).

2.3 The Implementation of an Automatic Ethical Auditing
in Al Systems

As we have seen in Sect. 2.1 the ethical/legal auditing just recalled is indeed the
way in which the human moral/legal agents satisfy the right to transparency of
the other human subjects and of the whole society as to our decisions, given the
unavoidable opacity characterizing the human minds in taking their decisions. Or, in
other terms, this self-auditing (“ethical reasoning” as distinguished from the “ethical
judgement or decision”) for justifying the morality/legality of our decision is the way
by which we as human persons satisfy the obligation to accountability of our deci-
sions/actions to everybody, ourselves included, making us fully responsible moral/
legal agents. Precisely this transparent automatic self-auditing is what till now was
lacking to autonomous Al systems for fully justifying the ethical accountability of
their decisions and then their definition as artificial moral agents in ME.

From the formal standpoint of the Theoretical Computer Science (TCS), the imple-
mentation of an automatic ethical/legal auditing of the decisions taken by an Al
system requires a deontic HOL for performing the metalinguistic analysis of deontic
consistency of the decisions. This requires the support of automatic demonstrators
specialized in tasks of deontic logic of higher order than the first [19].

Although unknown to the public because they are used almost exclusively in the
field of pure and applied logical and mathematical research, systems of this type
exist since many years for the metalogical analysis using a HOL of FOL inferences
in logic and mathematics.

These HOL systems are widely used for demonstrating/analyzing particularly
complex logical/mathematical theorems [25] but overall, they are applied for the
formal consistency analysis of decisions performed by complex automatic control
systems that require a very high degree of robustness to error. Indeed, because they
are used in very delicate fields, an error or inconsistency of the program would have
catastrophic consequences, not repairable. These systems therefore perform meta-
controls for the analysis of safety and reliability of particularly delicate automatic
control systems before their commercialization / application in the field.

This analysis in TCS is denoted as functional programming, or more exactly, as
“functional analysis of programs”.

e Think, for instance, at the systems for the automatic control of the landing of
aircrafts by the autopilot. Effectively, during landing, the pilot always gives the
controls of the aircraft to the automatic landing control system managed by the
control tower of the airport, so that—with the human support of the air traffic
controllers—the pilot remains only for emergency interventions.
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e Or think at the programs for the automatic remote-controlled points in railway
stations; or think at the programs for the control systems of space travels, of nuclear
plants, of large industrial complexes, of large (electricity/gas) power distribution
networks, of large telecommunication networks, where the net resources must be
allocated and reallocated continuously, according to the degree of occupation of
the network at various times and situations, and so on. As we see, these automatic
control systems govern ever larger parts of our daily lives and the issue of the
automatic continuous check of their reliability/safety/security is fundamental.

Only, recently, due to the tumultuous development of ME problems, the new TCS
research sector has opened for the design and engineering of meta-control systems
in the field of ethical reasoners, normative theories, and deontic logics.

As Christoph Benzmiiller of the Freie Universitit Berlin—one of the world’s
leading experts in the field of automatic theorem demonstrators using HOLs [25]—
and his colleagues summarized at the beginning of their review article on this new
field of research, “the main motivation is the development of appropriate tools for the
control and management (governance) of intelligent autonomous systems” [19, p. 1].
Effectively, what they present in their paper is not a model but a development tool
for programmers named LogiKEy—Logic and Knowledge Engineering Framework
and Methodology—*for the design and engineering of ethical reasoners, normative
theories and deontic logics”. Without entering in further technical specifications, the
proposed architecture is based on the semantic incorporation of logical calculations
and theories that belong to a (specific) ethical-legal domain, within a classical HOL
framework—effectively, Alonso Church’s type theory [26].

As intuitively represented in Fig. 1, the displayed architecture for an intelligent
autonomous system with explicit ethical competency distinguishes the explicit ethical
reasoner with its ethico-legal domain theories (= meta-controller sub-system) from
the Al reasoner/planner (= controlled sub-system) and from other components.
They also include the application data and knowledge available to both reasoners
(sub-systems). The ethical reasoner takes as input the suggested actions from the
Al reasoner/planner and hints to relevant application data and knowledge, as well
as to a given ethical-legal domain theory. Then, it produces as output assessments
and judgements concerning which actions are acceptable or not, and it also provides
the corresponding explanations. That is, the actions suggested by the Al reasoner
(controlled sub-system) in Fig. 1 are not executed immediately, but additionally
assessed by the ethical reasoner (meta-controller subsystem) for compliance with
respect to the given ethico-legal domain theory. This assessment is intended to provide
an additional, explicit layer of explanation and control on top of the Al reasoner,
which already comes with solid own ethical competency [19, pp. 2-3].

In other terms, deontic HOL systems such as the “explicit ethical reasoner” just
outlined fully satisfy the second condition we defined for ethically/legally account-
able Al systems interpreted as artificial moral agents. What is relevant in the architec-
ture outlined is that its metalinguistic consistency analyses can be applied to different
deontic logic models, i.e., to different ethico-legal domains.
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Moreover, the autonomous Al system (Al reasoner) whose decisions are the input
of the ethical reasoner can be, either of the symbolic type, or of the pre-symbolic
one. That is, its own “ethical competency” assessed by the ethical reasoner can be
implemented, either as deontic logic algorithms in the decision-tree of its program,
or as ethica/legal constraints imposed to the optimization function in which any
supervised ML algorithm ultimately reduces itself.

Finally, the ethical reasoner metalogical assessments, not only are fully explicit
because no ML algorithm can be implemented in it just as for whichever HOL system
(i.e., it is always an Al system of the symbolic type) but it is able to give suitable
“explanations” of its assessments over the ethical/legal evaluations of the Al reasoner
under scrutiny. In this way, it fully satisfies the “right to transparency” that the society
must pretend from the autonomous Al systems.

3 Relation Ethics and the Fairness Issue in Machine Ethics

3.1 Relation Ethics and Fairness in a “Liquid Society”

Let us consider now the fifth condition in the list defined in Sect. 1.3 for the
consistent attribution of the ontological status of autonomous moral agent both to
humans and machines. That is, the capability of performing fair moral judgements/
decisions despite the discriminations presents toward individual and groups in the
social environment of which they are part, and on which their education/training
depend.
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The necessity of implementing in ethically accountable Al systems fairness ethical
criteria to avoid biases in the statistics on which the training phase of a ML model is
performed has been recently defined as the necessity of avoiding unintended but real
“algorithmic injustices” [27]. Avoiding these problems requires, indeed, “developing
and deploying ethical algorithmic systems” satisfying a relational approach to ethics.

Effectively, when the standard statistical

...machine learning systems that infer and predict individual behaviour and action, based
on superficial extrapolations, are deployed into the social world, various unintended prob-
lems arise. These systems ‘pick up’ social and historical stereotypes rather than any deep
fundamental causal explanations. In the process, individuals and groups, often at the margins
of society that fail to fit stereotypical boxes, suffer the undesirable consequences. Various
findings illustrate this: bias in detecting skin tones in pedestrians; bias in predictive policing
systems; gender bias and discrimination in the display of STEM career ads; racial bias
in recidivism algorithms; bias in the politics of search engines; bias and discrimination in
medicine; and bias in hiring, to mention but a few. [27, p. 1]

This means that Al algorithms, when applied to automated supports for decision-
making processes in the social, political, and economic sphere are not at all “value-
free” or “a-moral”. The “relational ethics approach” in developing an ethically
accountable Al is indeed based on the evidence that “neither people nor the environ-
ment, are static; what society deems fair and ethical changes over time” [27, p. 6].
And, we add, “over space too”, in the sense that they change for the different groups
composing a society. Before all, for the minorities and/or for all the marginalized
groups also when numerically consistent, often not having the same welfare oppor-
tunities, often sharing different value systems, as well as different criteria of personal
flourishing as to the rest of a society. This continuous variability over “space” and
“time” of the value systems, of the welfare opportunities and then of the fairness
criteria, as well as over the group composition in which the different values systems
and welfare opportunities are embedded is indeed what characterizes our liguid
society and its many legal and ethical issues [28].

3.2 The Relation Ethics in Sen’s Theory of Comparative
Justice as Fairness and its ML Implementation

Recently, Pratik Gajane and Mykola Pechenizkiy, in a review paper dedicated to the
formalization of different fairness criteria in ML algorithms [23], complained the lack
of formalization in the ML literature of Amartya Sen’s (Economic Sciences Nobel
Prize, 1998) approach to justice as fairness, in the framework of his comparative
theory of distributive justice. This lack in ML research occurred despite the relevance
of this theory that, for instance, has been used in several documents of the United
Nations in the foundations of human development paradigm. What characterizes
Sen’s approach to fairness, for instance with respect to other approaches identifying
fairness with the “equality of opportunities”, is that
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variations related to the protected attributes like age, sex, gender, race, caste give individuals
unequal powers to achieve goals even when they have the same opportunities. In order to
equalize capabilities, people should be compensated for their unequal powers to convert
opportunities into “functionings” or “‘suitable states of being and doing”. (...) Crucially, the
notion of equality of capability calls for addressing inequalities due to social endowments
(e.g. gender) as well as natural endowments (e.g. sex), in contrast to the equality of resources.
[23, p. 4]

Effectively, for making some steps in the direction of formalizing Sen’s theory of
fairness in ML algorithms it is useful to start from its logical formalization in the
context of the so-called social choice theory (SCT) [14, 29], of which Sen himself
was one of the founders,° together with another Nobel Prize in Economics, Kenneth
Arrow.
When a group needs to make a decision, we are faced with the problem of aggregating the
views of the individual members of that group into a single collective view that adequately
reflects the “will of the people”. How are we supposed to do this? This is a fundamental

question of deep philosophical, economic, and political significance that, around the middle
of 20th century, has given rise to the field of Social Choice Theory. [29, p. 333]

As Sen synthesizes in his Nobel Lecture,

SCT provides a general approach to the evaluation of, and choice over, alternative social
possibilities (including inter alia the assessment of social welfare, inequality, and poverty).
(...) If there is a central question that can be seen as the motivating issue that inspires social
choice theory, it is this: how can it be possible to arrive at cogent aggregative judgments
about the society (for example, about “social welfare”, or “the public interest”, or “aggre-
gate poverty”), given the diversity of preferences, concerns, and predicaments of the different
individuals within the society? How can we find any rational basis for making such aggrega-
tive judgements as “the society prefers this to that” or “the society should choose this over
that” or “this is socially right”? [30, pp. 128-129]

From the logical standpoint, it is evident that we are in the framework of a rela-
tional deontic modal logic, concerning alternative possible states of the social world
that are partially ordered according to different rankings, depending on different
physical, political, economic situations, but also on different value systems. Le.,
different rankings of social states, which are satisfying different maximality—not
“optimality”, that is “maximally good for all the different context” and that as such
is not finitarily computable—criteria of goodness for the different individuals and
groups.” From a formal standpoint, this means that we are in the Category Theory
(CT) framework of computational topology applied to ML [31].

Logically, we are indeed in the framework of the algebraic interpretation of
Kripke’s relational modal logic, based on topologies of Non-wellfounded (NWF)

6 Indeed, Sen decided to dedicate his Nobel Lecture to illustrate this novel discipline, conscious
of its relevance for the future of the social, economic, and political sciences. Indeed, it applies the
axiomatic method also to them, and to their mathematical and experimental statistical tools, so to
make them properly “sciences” according to the modern Galilean sense of the term. In few words,
SCT is the branch of formal philosophy concerning the social world [29].

7 In this sense, the implementation of Sen’s theory requires Kripke’s relational modal logic in its
deontic interpretation, in which local truths are allowed, as far as coalgebraically modelled over
topologies of partially ordered sets (see Sect. D1 in Appendix D).
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sets [32], in which no set total ordering is admitted but different trees of partially
ordered sets sharing the same root. This allows to define several FOL local seman-
tics of modal Boolean Algebras with Operators (BAOs), each defined on a different
partition of a given universe of possible world states (see [33, 34] for more details,
and synthetically Sect. D1 in Appendix D).

Indeed, generally, Sen’s SCT distinguishes among the different social theories of
justice in economy and in politics, in terms of the basal space of the main variables
with which each theory is concerned, and in terms of the aggregation principle
of such variables characterizing each theory, and then discriminating between just/
unjust states, on which the consequent social choices are justified.

For instance—to understand the utility of Sen’s approach to SCT for formalizing
different ethical and political theories in social science—in the utilitarian theories
of justice typical of the liberal economy [1, pp. 139-140], the “basal space” consists
“in the combination of the utilities of the different individuals, and nothing else—
rights, freedoms, opportunities, equal treatments—is valued except for instrumental
reasons”. Consequently, the “aggregation principle”, discriminating between just and
unjust states in such theories is the simple “utility sum-total” for assessing the social
state (“sum-ranking”), without considering other relevant factors, such as measures
of “dispersion”, or of “inequalities in accessing to opportunities”, etc.

Sen’s theory of the comparative distributive justice, on the contrary, substitutes the
abstract and ineffective Paretian equality principle typical of the classical liberalism®
with an equity or fairness principle that he borrowed from his main teachers: Aristotle,
Adam Smith, and overall, John Rawls [35]. Sen’s fairness theory, indeed, starts from
the concrete evidence that groups and individuals do not share the same access
to economic commodities and utilities, and do not have the same possibility of
influencing the social choices. This depends not only on “manifest injustices” in
the society, either on a national or international extension, but also on different
ethical principles, and then on different evaluations of how the economic utilities and
commodities are functional to “valuable and valued ways of living and behaving”
or functionings in Sen’s jargon, in view of the flourishing of the different personal
capabilities.

Therefore, the “basal space” of Sen’s theory of justice consists,

in the set of combinations of functionings from which the person can choose any one combi-

nation. Thus, this “capability set” stands for the actual freedom of choice a person has over
the alternative lives that he or she can lead. [14, p. 357]

The ‘“‘aggregation principle” in Sen’s distributive theory of justice is the Rawl-
sian famous fairness criterion of the maximin [36, p. 266]. That is, assigning more
resources to the less advantaged individuals and groups in the society, to level the

8 According to this equality principle whichever individual or group in the society have the same
possibilities of accessing/enjoying the basic liberties, as well as the economical utilities and
commodities, and then they have the same possibilities of influencing the social choices/assessments
(see [37] for a systematic usage of this principle in SCT). It is evident the unrealistic character of
this principle that is at the basis of the theory of liberalism and that is the formal root of its crisis in
our liquid society (see [10] for a wider discussion)!
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inequalities derived from “the natural lottery” theorized by Adam Smith, which
blindly distributes talents, resources, and access to opportunities.

The main difference with Rawls’ theory of “justice as fairness” [120], consists in
the comparative character of Sen’s theory. This ultimately depends on the fact that the
maximin principle in Rawls’ theory concerns the just institutions [116], while in Sen’s
theory the principle must work as an aggregation principle of variables in a SCT (see
[10, 14] for more details). This means that, while in Rawls the maximin principle is
intended according to the Kantian normativism (i.e., supposing the absolute character
of all moral norms, for all possible contexts), and for which Rawls supposes a
hypothetical “original position” in which an (ascetical) “veil of ignorance” is posed
over all the subjective differences among humans and groups, so to consider all on
the very same footing [36, 37], in Sen’s SCT based on the interpersonal comparison
of welfare states, we start from the relevance of the subjective differences [10]. These
include not only the injustices and the inequalities in the resource distribution/access,
but also the ethical and the cultural differences and preferences, the religious beliefs
and even the personal tastes.

In this connection, one of the main results formally obtained by Sen in SCT is
his demonstration that the inconsistencies derived from the usage of the Rawlsian
maximin principle in SCT ultimately reduce themselves to the usage of the Paretian
axiom of equality (see Note 8) in assessing the different welfare rankings in a SCT
inspired by maximin fairness criteria. Sen demonstrated, indeed, that this axiom
is the formal root of whichever “impossibility theorem” in SCT [36], the famous
“Arrow’s impossibility theorem” included [37], with its troubling consequences for
the same notion of representative democracy, and that ignited a wide discussion in
SCT literature.’

In Sen’s theory, indeed, the Paretian axiom is substituted by the axiom of extended
identity among individual positions, by which the maximin fairness criterion becomes
an effective principle of variable aggregation, based on the comparison between
different individual positions in different situations, so avoiding the systematic risk
that a uniform application of the maximin becomes a source of effective injustice
and of economical regression.'”

This axiom wants to be a formal version of Adam Smith’s extended sympathy
principle, in the sense of “placing oneself in the position of another”, extended
to a society of individuals (see [14, pp. 210-220]). Sen gave a formal version of
this principle in terms of an axiom of extended identity among n distinct welfare

9 Roughly speaking, Arrow’s Impossibility Theorem demonstrates formally in SCT that, given the
Paretian axiom of equality, no shared ranking of welfare states and then of social choices is possible
without some form of dictatorship. In this way, the early fame of the young Sen depends on the
publication of his formal demonstration that Arrow’s impossibility theorem is effectively a “a
theorem of impossibility of a Paretian liberal” [36].

10 Recently, because of the economical emergencies related with Covid-19 pandemic, all govern-
ments in the world applied uniformly the maximin principle for restoring at least partially the
incomes of individuals and companies. However, it is evident to all that without applying compar-
ative discriminative criteria (variable aggregations) among the different positions, this type of
supports is not only economically unsustainable in the long-term, but also source of injustices.
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rankings and relative positions of persons and groups in SCT. Indeed, as far as the
SCT in Sen’s quantitative approach allows a comparable grading of “gains” and
“loss”!! of commodities and utilities for different persons and groups in different
social positions, the axiom of “extended identity” allows us to use the maximin
principle on a relative and not absolute basis as an aggregation principle of different
welfare rankings, for consistently assessing fair social rankings of welfare states.

That is, whichever ranking is only a partial ordering of social welfare states,
because no fotal ordering (complete ranking) might ever exist, like in Rawls’ norma-
tivism, or like in a SCT applying the Pareto unanimity axiom such as Arrow’s social
welfare functions. On the contrary, Sen’s application of the maximin criterion gives
us a suitable quantitative parametrization of the welfare aggregates involved.

For this aim, Sen extended the quantitative comparative justice grading of Patrick
Suppes to n individuals (see Note 11) because it allows to include coherently in
the model both an utilitarian and a maximin criterion for variable aggregation
overcoming the limits of both.

If (the social state) x is more just than (the social state) y in the sense of Suppes (with
the extended identity axiom imposed), then x must have a larger welfare aggregate than y
(utilitarian relation) and also the worst-off individual at x must be at least as well-off as any
individual at y (maximin relation). [14, p. 208]

The axiom in its formal version within SCT is illustrated in the Appendix C of this
paper. Anyway, this conclusion of Sen is particularly significant for our aims.

The capability approach is entirely consistent with reliance on partial rankings and limited
agreements. The main task is to get the weights — or ranges of weights — appropriate for the
comparative judgements that can be reached through reasoning, and if the result is a partial
ranking, then we can make precisely those judgements that a partial ranking allows. ([14,
p- 369])

Where, of course, Sen’s “reasoning” in ME is not only the human one but also the
“Al reasoning” of ML models of SCT, in which the degrees of freedom'* of the
probability distribution of utilities and commodities among the different groups of
individuals satisfy a maximin fairness criterion of variable aggregation in the sense
just explained by Sen.

Indeed (see Sect. B7 in Appendix B, Sect. D2 in Appendix D, and [34]), it is
possible to use the Doubling of the Degrees of Freedom (DDF) principle charac-
terizing a “deep-belief NN” [40] in its QFT computational interpretation for imple-
menting Sen’s fairness theory based on the maximin principle in an unsupervised

11 Effectively, as explained at length in the Chap. 9 (pp. 203-209), and in a formalized way in
the Chap. 9% (pp. 210-218) of [14], Sen is here referring to a fundamental contribution of Patrick
Suppes to SCT, in a paper published in 1966 [114], where he developed formally a ““social decision
function” based on the principle of a grading of different level of justice, on an interpersonal and
then equitable basis, even though applied only to a two-individuals case. L.e., Suppes’ rule is not
properly a social choice function.

12 We recall here briefly that the “degrees of freedom”, as a result of a suitable variable aggregation,
define in statistics the dimensions of the “probability space”, within which a given probability
distribution can variate (see Sect. D2 in Appendix D for more details).
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ML algorithm to eliminate statistical biases in data. The DDF principle gives, indeed,
an immediate computational effectiveness to the related Sen’s “extended identity
axiom” (see Appendix C) between the “basal spaces” (i.e., in Sen’s terms “the sets of
combinations of functionings from which persons can freely choose any one combi-
nation”) of different disadvantaged/advantaged groups balanced into one only “fair”
social state space of opportunity access to favorable social states. Indeed, also the
DDF principle is in physics a balancing principle between two spaces of proba-
bility distributions representing a system and its environment, granting by a suitable
“variable aggregation” in the resulting merged space, a sort of “fair distribution”
of the resources (free energy) among all the components of such a doubled system
(see Sect. D2 in Appendix D for a physical explanation of the DDF principle in the
formalism of the computational QFT).

On the other hand, it is easy in the light of the discussion developed in Appendix
D to guess that a physical counterpart of the maximin principle in economy for a
fair distribution of resources is in the “fair distribution of energy” among the compo-
nents of a complex dissipative system balanced with its thermal bath in physics.
Therefore, Sen’s extended identity axiom between different subjective basal spaces
in SCT (R;, R i), has in the DDF principle (A, A) of dissipative QFT its natural
implementation as the basis of an unsupervised quantum ML algorithm inspired to
the dissipative QFT underlying brain network dynamics (see Appendix D and [34]
for more details). Or—if we prefer to use the “first-person” jargon of the intentional
language for expressing Smith’s “extended sympathy” principle (see Sect. B1 in
Appendix B and the “cognitive triangle” of Fig. 4)—, only by mirroring “myself” in
“you” so to be each “the double” of the other, we can constitute a sympathetic “we”
(see [40]).

4 Conclusions: A Relational Ethics for Ethically
Accountable AI Systems

To conclude, in our paper we discussed which are the logical and ontological condi-
tions that Al autonomous systems must satisfy to be consistently considered as arti-
ficial moral agents, i.e., as subjects of moral agency, that is, of decisions with an
ethical/legal relevance in the realm of ME. And not only as simple objects, i.e., as
tools designed and used by humans—and then as simple extensions of the human
intelligence and the human moral agency—, to which no autonomous moral agency
can be attributed.

In our analysis, we started therefore from the basic notions of the Theory of Active-
Control Systems, i.e., of Cybernetics as “the theory of communication and control
in animals and machines”—according to Wiener’s early definition. This reference
is fundamental for recalling that moral agency can be attributed to humans and
machines only and only if the “active control” on their actions concerns the ultimate
supervising level of the goals of actions and of their “heterarchy”, as McCulloch and
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Pitts first emphasized in their pioneering work on ANNs [40]. That is, we can speak
of moral agency in humans and machines if and only if their active control concerns
the “targets” to be satisfied by their actions.

In this perspective, the ever-stricter interaction humans-machines in our Commu-
nication Age, must be interpreted as the interaction between conscious and uncon-
scious communication/moral agents, respectively. In this framework, we empha-
sized that the notion of “distributed responsibility” between humans and machines
in contemporary Al ethics discussions should be enriched by a further distinction
derived from NE. This distinction is fundamental especially for autonomous Al
systems endowed with “deep” ML algorithms and then with an unavoidable “opac-
ity” in their decision processes (e.g., the “self-driving” cars). Indeed, the slow moral
conscious responsibility of a skilled (trained) human driver concerns the moral/legal
relevance of her/his driving actions. However, this does not mean being conscious
of the fast automatic responsiveness of the modules of the sensory-motor cortices of
her/his brain to the environment constraints (path curves, obstacles, etc.), ultimately
constituting the driver skill. In other words, also in human the decision process by
which our brains produce their fast adaptative response to the environment constraints
are unavoidably opaque like in Al systems endowed with deep ML algorithms.

Therefore, instead of speaking about “distributed responsibility” between humans
and machines, it should be better to speak about their distributed accountability to
moral/legal constraints. More precisely, a distributed accountability between the slow
responsibility of conscious moral agents and the fast responsiveness of unconscious
moral agents to the ethical/legal constraints on their actions from the shared social
environment.

Hence, the ethical/legal accountability of Al autonomous systems in ME and
the connected “right to transparency” about their decisions that also Al systems
must satisfy with respect to the society, does not concern directly the unavoidable
“opacity” that the Al systems endowed with ML models share with humans in their
decision processes. As we discussed in this paper, in the light of the “imitation game”
of the Turing test from which the same Al research program originates, the ethical
transparency in Al systems must concern what is before and after the opaque decision
process in humans and machines.

Hence, the main contribution of the present paper to the ME discussion, is that
the conditions that the Al autonomous systems must satisfy to fulfill the right to
transparency that the society must pretend from them when their decisions have an
ethical/legal relevance, are essentially two. The same two conditions that therefore
Al systems must satisfy for consistently attributing them the ontological status of
unconscious artificial moral agents in ME.

1. The presence of explicit ethical/legal constraints on their FOL decisions on the
individual actions to execute. They can be implemented, either in the form of
suitable deontic algorithms in the inferential-trees characterizing the program of
asymbolic Al system; or in the form of suitable ethical/legal clauses to be satisfied
in the ML algorithms of a pre-symbolic Al system. Indeed, both the supervised
learning process, and the deontic obligatoriness as distinct from the alethic (logic,
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causal) necessity in modal logic, ultimately consist into the calculation of an
optimization function with respect to a given target/label (i.e., the minimization
of some “cost function”).

2. The presence of an explicit “deontic reasoner” performing a deontic HOL auto-
matic assessment over the effective ethical/legal compliance of the FOL deci-
sions taken by the Al system. That is, an automatic explicit metalogical deontic
analysis over the decisions taken by the AI system endowed with some ethical
competence, before that these decisions are transformed into actions over the
social environment.

In our discussion, we emphasized that, while there exists already a wide literature
about different implementations of ethical/legal clauses in the optimization function
in which any supervised ML algorithm ultimately consists, only recently the Al
research started to propose suitable solutions to satisfy the second condition we
outlined. However, this second condition is fundamental for granting the ethical/
legal accountability of Al autonomous systems for their decisions/actions, before all
because also for humans it is the same.

Indeed, this sort of moral ‘“self-auditing” is what characterizes our moral
reasoning, as distinguished because following the moral judgement we made over the
“right action to execute” before executing it. Effectively, the ethical/legal account-
ability for our actions depends mainly on this explicit (conscious) metalogical assess-
ment (moral reasoning) about the morality of the judgement we performed on the
right action to execute. It is therefore necessary to satisfy a similar condition also for
granting the ethical/legal accountability for the decisions/actions of Al autonomous
systems, so that we can consistently attribute to them the ontological notion of
artificial moral agents.

Finally, particular attention we dedicated to the issue of the statistical bias toward
given disadvantaged groups in the society which are present in the statistical samples
on which the training of a supervised ML model is performed. This determines
unwanted but effective “algorithmic injustices (unfairness)” in the decisions of the
Al systems trained on these biased data. This issue is largely discussed in litera-
ture because strictly related to the precedent one of the “opacity” of the net training
process. Generally, it can be solved by inserting fairness ethical criteria in the statis-
tical data pre-processing of the training set of a supervised ML model. Effectively,
such a pre-processing of the training set by an unsupervised ML algorithm for a
suitable variable aggregation is anyway necessary for granting to the net a fast and
reliable convergence to the desired results (see Sect. B7 in Appendix B and [77]). In
our case, it must be performed through a suitable unsupervised ML algorithm satis-
fying a “fair” variable aggregation criterion, in the context of a relational approach
to ME.

Therefore, in this context of a relational ethics approach to deontic logic, we
devoted particular attention to the possibility of implementing Sen’s theory of
distributive justice as fairness. This is based on the ethical maximin principle used as
a variable aggregation principle in the statistical data management, implemented as
a particular architecture of QFT quantum computing for unsupervised ML. Indeed,
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as explained at length in the Appendix D, the DDF principle of variable aggrega-
tion that is typical of the “dissipative” QFT modeling of quantum computing can be
directly used as an unsupervised ML algorithm for defining a “socially fair” proba-
bility space, in which the statistical distribution function outputted by the supervised
ML algorithm of the Al system can be defined. This modeling, indeed, from a formal
standpoint, is particularly suitable for a relational ethics approach to ML. Indeed, on
the one hand, it is directly inspired to brain unsupervised learning modeled using the
dissipative QFT as fundamental physics of the brain dynamics. On the other hand,
it is compliant with an algebraic modeling of deontic logic using Kripke’s relational
semantics of modal logics.

Appendix A: The Notion of “Active Control”’ in Biological
and Artificial Systems and Its Relevance for ME

Al. The Graded Notion of Active Control in Biological
and Artificial Systems

In his Cybernetics book [15], N. Wiener introduces the famous ontological distinc-
tion between “mechanical systems” that are capable only of a passive control on their
own behavior (i.e., satisfying the “Third Action-Reaction Principle” of Newtonian
Mechanics, and then ultimately a stability condition at equilibrium in classical and
statistical mechanics) and the “cybernetical systems” that are capable of an active-
control by feedback on their own behavior.'?> Where the notion of “feedback” consists
in the fact that only a part of the output y (and then a “physical signal”) is backpropa-
gated toward a controller C able to modulate the input x, for (recursively) minimizing
some measurable distance A between the output value y, and a target value y, (see
Fig. 2).

As discussed elsewhere [38], this basic triadic structure (input-controller-output)
of any active-control system—where the controller plays the semiotic role of Peirce’s
interpretant—is able to transform a “physical signal” into a “communication signal”
or a sign (i.e., “something being for something else”). That is, a physical signal
carrying on some “information” (i.e., where the “energy”” measure is distinguished
from the “information” measure). This makes possible to justify—in C. Shannon’s
statistical theory of communication—the distinction and the strict relationship
(because both related to some minimization of the free-energy function, even though

13 Following a famous exemplification of the physicist Victor F. Weisskopf [117] in the atomic and
molecular physics, the physics of the atom nuclei controls the structure of the electron distribution
according to different levels of energy (the electron “orbitals” according to the semi-classic Bohr’s
“planetary” representation of the atoms) around the atomic nuclei, but there is no feedback from
electrons over the nucleons (protons and neutrons) in the atomic nuclei. Thus, following Weisskopf
suggestion, atoms and molecules, despite their complex structures, are not active control systems,
differently from also the more elementary biological system like a cell or unicellular organisms.
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Fig. 2 Elementary scheme y'} A=D

of an active-control system Ve
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representation of the three —_—

main levels on which an @
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in biological and artificial
systems

not necessarily at equilibrium) between the physical entropy S and the information
entropy H, both sharing the same statistical definition. In this way, Wiener was right
in his visionary approach aimed at giving by the notion of active control and its
sophisticated mathematical apparatus, for the first time in the history of modern
science, a strong common mathematical basis, both to the biological sciences and to
the artificial sciences.

This common mathematical basis of the notion of active control in biological and
artificial systems—following Miiller’s suggestion—can help us also in clarifying
the notion of “graded and relative” autonomy of Al systems/robot with respect to
the human control. Indeed, always referring to the basic notions of cybernetics, it
is well-known that the active-control can be exerted both in artificial and biological
systems (humans included) at three main levels:

N

1. The active-control over the execution/not-execution of some operation by the
effector sub-system E (see Fig. 3) in the more elementary active-control systems
(think, for example, at a simple thermostatic switch).

2. The active-control over the organization level O (see Fig. 3) of the complex
response of a system endowed with several types of sensors for taking into
account different parameters. Think, for example, at the “smart thermostats”
with several sensors of the modern refrigerators. This is typical in nature of the
biological systems as self-organizing systems, because endowed with non-linear
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self-regulation processes at different degrees of complexity. This makes them
able of adapting themselves to a varying environment, so to be stable in far-
from-equilibrium conditions (think, for instance, at the biological homeostasis
[39D.

The active-control over an heterarchy of the goals (targets) to be fulfilled, which
supervise the behavior of any active-control system. It is evident that we speak
about autonomous systems both in the biological and in the artificial systems,
when the active control concerns this ultimate supervising level S in Fig. 3). E.g.,
in the self-controlled behavior of the human free-agency and/or in Al autonomous
systems. Think, for instance, at the typical ethical conflict in self-driving cars
between the constraints of the safety of the car passengers, and of the safety of a
pedestrian crossing suddenly with a red-light a narrow street with high walls on
both sides.

This active control at its ultimate level is generally implemented in two funda-

mental ways in Al systems, even though in many practical applications there exists
an effective hybridization of the two approaches (see Appendix B):

1.

In symbolic Al systems—the so-called “expert systems” because simulating algo-
rithmically the expertise of humans in some specific field of data management
(see Sect. 2.2)—by inserting the ethical constraints in the form of deontic logic
algorithms in the explicit inferential tree, on which the system decisions of this
class of Al systems is based without any “opacity” (see [19] for an updated
bibliography about this type of approach).

In pre-symbolic Al systems, that is, the Al systems endowed with ML models
due to the extremely large amount of data to be managed (often with millions
of items and billions of parameters (“big data”)) that excludes in principle any
human expertise. In this case, the ethical constraints are inserted as ethical condi-
tions (deontic logic “AND” clauses) to be satisfied in the optimization process
(minimization of the error), to which any multilayered supervised ML algorithm
ultimately reduces itself. This implies the ineludible “opacity” in the Al system
decision process (see [20] for an introduction and [40] for deeper considerations
on these topics).

To conclude, whichever system, either natural or artificial, able to implement an

active control over the ultimate level of the goals of its behavior is effectively able to
perform deontic modal logic calculations, which connotes it formally as a natural/
artificial moral agent.

A2. The Deontic Modal Logic as a Formal Justification
of the “Hume Law”’

In the axiomatic logic framework, modal logic—that is, the logic of the different
senses of necessity/possibility in philosophical logic—ultimately consists in adding



46 G. Basti and G. Vitiello

some modal axioms to the usual axioms of the propositional calculus. These axioms
rule the consistent usage of the necessity /possibility < operators in the modal propo-
sitional calculus. This means that the modal logic is a two-valued (1/0) propositional
logic in which the true/false evaluation function of complex propositions cannot be
reduced to the usage of the fruth-tables of logical connectives (“NOT”, “AND”,
“OR”, “IF...THEN") among elementary (subject-predicate) propositions like in the
usual propositional calculus [41]. Indeed, the truth evaluation function in modal
semantics depends on different truth criteria, according to the main different (alethic,
epistemic, deontic) interpretations of the modal operators in different linguistic
contexts/usages [42].

In this axiomatic framework, it is therefore possible to satisfy formally in modal
logic terms the so-called “Hume Law”. That is, the distinction between the “neces-
sity” in the descriptive statements of the physical/metaphysical discourse, and the
“obligation” in the normative statements of the moral/legal discourse.'* That is, in
terms of the modal logic distinction between alethic (physical, causal) necessity/
possibility (/eOO/Q) operators, and deontic (moral, legal) obligation/permission
(O/P) operators.

Particularly, the so-called value-based deontic logic interprets the reflexive modal
relation of alethic logic based on the modal axiom T(p) := Op — p, thatis, “if p
is true in all possible worlds, then it is true in the actual one”, in terms of satisfaction
of an optimality axiological condition. That is, p is “maximally good” for a given
moral agent x in situation: Op(x, p). Then: O := (Op(x, p) A X4 A Xpi) = Pp.

For instance, in alethic contexts it is sufficient that, if a physical law p holds in all
physical contexts, then it holds also in the actual one. E.g., in the case of Galilean
Law, “if it is necessary that all heavy bodies fall, then they fall also in the actual
world”. On the contrary, this is not true in deontic context, for instance in the case
of the moral/legal norm of tax payment. That is, it is not true that “if it is obligatory
that all people pay taxes, then all people pay taxes in the real world”.

In order that the deontic obligatoriness of a moral/legal norm becomes effective
in the real social world, it is necessary that this norm be related with a value to be
pursued (something that is good or “optimal”) for a given moral agent x. x must
satisfy the double condition (clauses) of accepting it, x,, and the freedom situation
of having no impediment in effectively pursuing this goal, x,;, by a suitable “good”
action. Of course, in the case of pluralistic societies like ours, instead of a HOL
condition of ethical optimality Op (= maximally good for all social-world states),
it is sufficient a FOL condition of ethical maximality Max for given partitions (or
disjoint unions or coproducts) of the social-world states. This brings us to a relation
ethics based on Kripke’s modal relational semantics (see also Sect. D1 in Appendix
D).

14 Historically, indeed, the Hume Law distinction resulted to be so impressive in the Modern philo-
sophical debate, because of the abandon of the modal logic distinctions—well known and largely
discussed in the Scholastic philosophy—in modern logic and philosophy from the XV cent on. Prac-
tically, till to the beginning of the XX cent., when C. I. Lewis proposed his axiomatic formalization
of the modal logic [121], reinserting it in the modern philosophical and scientific debate.
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Appendix B: From the Symbolic to the Pre-symbolic
Approach in the AI Research Program

B1. The Origins of AI Research Program and of Cognitive
Sciences

For a further clarification of what we intend when we affirmed that our solution
of the opacity issue in Al autonomous system fully satisfies the “imitation game”
of the Turing test, on which the Al research program is based, it is convenient to
shortly review the same origins of Al program. The famous “Dartmouth University
Conference” of 1956 started officially the Al research program, based on the Turing
test (1950) and its “imitation game” [16]. It is impressive how the statement by
which John Mc Carthy, Marvin Minsky, Nathanial Rochester, and Claude Shannon
proposed to the Rockfeller Foundation to support this Summer Workshop at the
Dartmouth College effectively anticipates the research program of Al developed
during the following decades.

We propose that a 2-month, 10-man study of artificial intelligence be carried out during
the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to
proceed on the basis of the conjecture that every aspect of learning or any other feature of
intelligence can in principle be so precisely described that a machine can be made to simulate
it. An attempt will be made to find how to make machines use language, form abstractions
and concepts, solve kinds of problems now reserved for humans, and improve themselves.
We think that a significant advance can be made in one or more of these problems if a
carefully selected group of scientists work on it together for a summer. [17]

The proposal goes on to discuss digital computers, natural language processing,
neural networks, theory of computation, abstraction and creativity, all research
fields of AI based on the so-called “Al-dogma”, as Douglas Hofstadter named
it [43]. Namely, if a Universal Turing Machine (UTM)—effectively a “general
purpose” programmable computer—can imitate successfully a human intelligent
task, there must exist some essential “isomorphism” between the program running
in the computer, and the program running in the brain. From this principle, the re-
interpretation of the classical “mind-body” relationship in terms of the “software-
hardware” relationship, and then the metaphor of mind as “software” of the brain
“wetware”, historically derives [44]. From this, in the 60’s of the last century, the
cognitive science research program as the “new” science of mind arises [45]. This is
characterized by a non-reductionist approach, with respect to the physicalist approach
of the so-called “central-state theory” to the mind science, proposed by Herbert Feigl
at the end of 50s [46].

Feigl, indeed, was one of the youngest members of the Wiener Kreis, cradle of
the “neo-positivistic movement” in Europe at the beginning of XX cent. After that
he moved to US, founded at the University of Minneapolis the “Minnesota Center
for Philosophy of Science”. He also became the editor-in-chief of the prestigious
collection of the “Minnesota Studies of Philosophy of Science” that outlived the
death of his founder (1988) till today. In this collection, the results of the research
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of the Center, and of the movement of the so-called “logical empiricism” originated
from the Center activities, were published for several decades.!®

Now, in the II Volume of the collection, dedicated to the mind—body problem,
there were two fundamental contributions. The first one was the already quoted
Feigl’s article. The other one was by Wilfrid Sellars and was dedicated to the logical
analysis of the relationship between “the intentional and the mental” [47]. In it he
rightly emphasized that the “first-person (singular/plural) language” (i.e., the so-
called I/we talk) expressing the “intentional (with “t”) states of mind” of individual/
collective cognitive subjects, supposes an “intensional” (with “s””) modal logic”. This
makes logically inconsistent any materialistic attempt of identifying by a logical
equivalence, an intentional state of mind, with an observed state of brain. The obser-
vational language of science, supposes, indeed, the standard “extensional logic”'® of
the mathematical pure and applied sciences. In a word, the first-person “I/we-talk”
of the intentionality cannot be reduced systematically to the third-person “O-talk”
of the observational language of the neurophysiological sciences, in their searching
for the neural correlates of subjective mind states.

Sellars’ distinction between the “I/We-talk” of the mentalistic language expressing
the intentional conscious states, and the “O-talk” of the observational language of
the neurophysiological inquiry influenced systematically the further philosophical
reflections about the relationships between the intentional mind and the brain. From
another philosophical standpoint, Willard V.O. Quine synthesized the issue in the
following statement. We passed from Descartes’ “irreducible duality of substances”
about the mind-body to the “irreducible duality of languages and their logics”. Even
though both languages are sharing the same extra-linguistic referent: the physical
states/operations of the brain [48, pp. 132-134].

151t is worth to be recalled, that Karl R. Popper in his Intellectual Autobiography, defined himself
as “the killer of the Neo-Positivism”, identifying the date of such a murder with the (temporary)
stopping of the publication of the Minnesota Studies collection. Unfortunately for him, the collection
(not the Neo-Positivism) outlived not only Feigl’s death, but also Popper’s death (1994).

161 e., where the extensionality axiom holds between classes A, B holds: ((A <> B) = (A = B)).
That is, where the predicative meaning reduces itself to the predicate extension and then to the set-
theoretic logical membership, so that two predicates (e.g., “being water” and “being H,O”’) with the
same extension (defined on two equivalent classes of objects) must be considered as identical, and
then can be substituted each other, without changing the meaning of the predicative sentence [118].
In intensional logics, the extensionality axiom of mathematical logic does not hold, because what
the individual/collective intentional subjects intend with a given predicative sentence is fundamental
[119]. Formally, the different intensional logics (mainly, the ontic, epistemic and deontic logics)
are different semantic interpretations of the common underlying syntax of the axiomatic modal
calculus. This is obtained from the classic propositional calculus, by adding some modal axioms,
ruling the usage of the “necessity” [J, “possibility” ¢ modal operators [41, 42]. In other words,
all intensional logics—constituting the core of the so-called philosophical logic (i.e., the logics of
the ontological, epistemological, ethical disciplines where the reference to the human conscious
subject(s) is essential), as distinguished from the mathematical logic of the scientific disciplines—
are not “truth-functional” based on the usage of the “truth tables” of the logical connectives like
in the mathematical propositional logic. Each intensional semantics is indeed characterized by a
different truth criterion, i.e., by a different interpretation of the modal operators, through which
different intensional logics are distinguished (see Sect. A2).
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A similar ontological position was shared also by Feigl in [49], where he proposed
his physicalist interpretation of the “central-state theory” of the mind-body relation-
ship based on Sellars’ irreducibility of the intensional to the extensional logics. Feigl
suggested that an appropriate mind’s science must be based on a triangulation among:

1. The I-talk of the intentional mentalistic language.

2. The O;-talk of the observational language of neurosciences that he denoted as
“physical;”.

3. The O;.talk of the observational language of behavioral sciences that he denoted
as “physical,”.

Now, what characterizes Feigl’s central-state theory is the relationship between
the two observational languages denoted as “physical;” and “physical,”. Feigl
assimilated them to the relationship in thermodynamics between, respectively, the
“microstates” of the particle motions, and the correspondent “macroscopic” ther-
modynamic statistical variables (temperature, pressure, and volume). These have
their proper explanation at level of the microstate dynamics, which in our case is
the microstate of the brain dynamics. However, what links Feigl’s theory to the
early Al-research program and to the development of cognitive sciences and neuro-
sciences is the observation that, both the physical entropy S in Boltzmann’s statistical
thermodynamics for closed systems, and the information entropy H of Shannon’s
mathematical communication theory applied to TM computations, share ultimately
the linear character of the dynamics involved [49].

This supposition identifying energy and information,'’ evidently, no longer
applies when, starting from the 70s of the last century, the strong non-linear character
of the thermodynamic processes experimentally emerged. They indeed characterize
all the “open” or dissipative systems, such as all the biological systems and mainly
the natural brains are. On this basis, Walter Freeman [50], John Searle [51, 52],
Hubert Dreyfus [53], all working at University of California in Berkeley, strongly
criticized the early Al approach in cognitive neuroscience, necessarily based on the
UTM linear computations. In a naive but substantially correct way, Searle by his
famous “Chinese room” metaphor, as opposed to the “room” of the Turing test [51],
stated that a UTM is not a model of the human brain because brains calculation
are based on the intensional logic—the logic of the psychological intentionality, as
Sellars taught us—and not of the extensional mathematical logic of a TM (see Note
16).

Therefore, following Howard Gardner’s historical reconstruction of the early
development of cognitive science [45], what characterizes the “cognitive revolution”
in the mind science is the complete substitution to Feigl’s “physical,” observational
language, with the computational language of the information processing in the
brain dynamics. In other terms, the updated triangulation of the modern cognitive
neuroscience, as well as of the Al systems in Theoretical Computer Science (TCS),
is among [54]:

171t is remarkable that A. Einstein stressed that in fully deterministic systems the energy-information
distinction has no sense at all.
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I - We Talk of Conscious State Reports
(intensional modal logic)

C A
B
O-Talk 2 of Information Processing Reports O-Talk 1 of Neural State Reports
(mathematical and/or modal logics) (extensional mathematical logic)

Fig. 4 Scheme of the triangulation of the cognitive neurosciences

1. The I/We-talk of the subjective intentional state reports in “singular/plural first
person”. They are formalized in the “intensional logics” like as many (“ontic”,
“epistemic”, “deontic”) interpretations of the modal calculus.

2. The O-talk; observational language of neuroscience, formalized in the exten-
sional logic of the neuroscience mathematical models.

3. The O-talk, of the observational language of the information processing in the
brain. They can be developed, either in terms of the mathematical calculus of the
extensional logic, or in terms of the modal calculus of the intensional logics.

Of course, what is interesting for our aims (see Appendix D) is the possibility
of implementing in Al systems the deontic algorithms of a modal BAO that has its
proper foundation in the topological approach to TCS, based on the fundamental
Marshal Stone’s “Representation Theorem of Boolean Algebras” [55]. And then in
the consequent development by Alfred Tarski and Bjarni Jonsson of a “Boolean
Algebra with Operators” (BAO) that allowed the extension of the operator algebras
formalism from physics to logic (see Sect. D2 in Appendix D and [54, 56-59] for
further details). Particularly, in the framework of the Category Theory (CT) metalan-
guage, the functorial dual equivalence between the category of coalgebras on Stone
Spaces SCoalg, and the category of modal BAO MBAO for the Vietoris functor
V, i.e., SCoalg(V) ~ MBAO(V)* has a particular relevance, because it allows an
algebraic interpretation of Saul Kripke’s modal relational semantics [60, 61], with a
direct applicability in TCS [33, 62]. Moreover, there exists the possibility of an imple-
mentation of this functorial duality in a categorical modeling of quantum information
processing in dissipative QFT systems, both in cognitive neurosciences [63, 64] and
in TCS [54, 65]. This possibility is based on the identity of the topological proper-
ties between the Stone spaces in logic and the Banach spaces of the C*-algebras in
quantum physics [66]. Particularly, this means that it is possible a quantum imple-
mentation of the so-called “deep-belief neural networks™, as a particular model of
unsupervised ML developed by Walter Freeman and his colleagues in Al systems
[67] (see Sect. B7 in Appendix B). In our case, it can be directly applied to implement
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in Al autonomous systems the deontic algorithms of a relational ethics, rigorously
formalized in the framework of Kripke’s modal relational logic, as we discuss in
Appendix D.

B2. The Symbolic Al and the Functionalist Approach
in Cognitive Sciences

For continuing our reconstruction of the Al research program, the interpretation of
the information processing in the brain in terms of the UTM calculations, is what
characterizes the early functionalist approach to cognitive sciences. This has its
manifesto in the already quoted paper by H. Putnam—who successively changed
completely his mind—its manifesto [44]. On the other hand, this approach has its
development in the so-called symbolic approach based on UTM to Al [68-70].
Indeed, in this approach the decisions of an Al system are based on the explicit
inferential decision tree implemented by the programmer, without any ML algorithm,
and then without any “opacity” in the decision process of the system.

Furthermore, the pioneering work of Warren S. McCulloch and Walter H. Pitts
during the 40’s of the last century [71] demonstrated that a (net of) neuron(s), with
a linear activation function'® can in principle implement the four basic Boolean
logic operations (“and”, “or”, “if.. then”, “if and only if... then”), and then it is
equivalent to a TM. In this way they extended the symbolic approach of Al, and then
the functionalist approach to cognitive sciences, also to artificial neural networks
(ANN).

Moreover, at the end of 40’s, Donald Olding Hebb, based on neurophysiolog-
ical evidence, defined the so-called associative Hebbian learning rule for the self-
assembling of neuron circuits in the brains [72]. According to it, the recurrent simulta-
neous activation of neurons produces an increasing in the synaptic statistical strength
(weight) among these neurons, following a linear rule. A rule that can be, therefore,
synthesized into the slogan “neurons increase the probability of wiring together if
they fire together” [73]. In 1954, B. G. Farley and Wesley A. Clark published a
computational model of self-organizing ANN based on the Hebbian rule, in which
arrays of artificial neurons (effectively, the cells of a transitive probability matrix
(TPM)" simulating on a digital computer the net dynamics) are enriched by feedfor-
ward/feedback circuits, determining the statistical weight of connection w;; between
two neurons i, j. These works, therefore, inaugurated, inside the realm of cogni-
tive sciences, the new discipline of cognitive neurosciences [74]. In this case, the

18 The linear activation function (state transition map) for each neuron is given, indeed, by the
algebraic summation of positive and negative input values, simulating the array of excitatory/
inhibitory synapses of natural neurons. When the overall value overcomes a fixed threshold, the
neuron is activated so to display a discrete 0/1 behavior.

19 We recall that a TPM is matrix of conditional probabilities ruling the transition of the activation
state (0/1) of each neuron (a cell of the matrix) in a way depending, according to a given statistical
rule, on the activation state of the other connected neurons (the other cells of the matrix).



52 G. Basti and G. Vitiello

Output

Fig. 5 Schematic representation of the linear perceptron parallel architecture, where a given pattern
X is “designed” over the input space (or “retina”) of the net. Each input neuron «; calculates
independently a different function ®;, whose supports are defined on a “filter” constituted by
disjoint subsets A; of the input space. The output neuron W, therefore, calculates the simple linear
summation of the results of the input neurons calculations

computing system of reference is a probabilistic TM, always with the supposition of
the linear character of the statistical dynamics involved.

B3. The Pre-symbolic Approach to ANNs and the Linear
Machine Learning

A further significant approach to early ANN architectures is the so-called linear
perceptron architecture of Frank Rosenblatt [75], who during the 60s hoped to imple-
ment a parallel computing architecture in a net of linear neurons, for simulating
the parallelism of the brain neural networking. The parallelism of the architecture
depends on the fact that each neuron is calculating independently a different function
defined on some disjoint subsets of the input set (i.e., mathematically a filter defined
on the power set of the input set). This has evident advantages as to the standard serial
computers in terms of computational velocity.?’ But overall, without the necessity
of a supervisor (programmer) distributing the different computational tasks among
the neurons (see Fig. 5).

In this way, the perceptron introduced the notion of (unsupervised) machine
learning (ML) in the ANN research program. Indeed, the updating of the statis-
tical weights (i.e., the probabilities of neuron activation) associated to the neuron
connections, during the training (learning) phase of the net over a representative
sample of the dataset, is based on a linear Hebbian-like rule.

However, in 1969 Marvin Minsky and Seymour Papert published at MIT a book
with a strong criticism of Rosenblatt’s linear perceptron [76]. Indeed, they demon-
strated mathematically, and in a very elegant and convincing way, that for this type
of parallel computational architecture conceived for the pattern recognition of one
only class of objects, it is in principle impossible to calculate the logical “XOR”

20 Indeed, if an algorithm is composed by n computational steps, while in a serial computer it is
performed by one only processor in n cycles of calculus, in a parallel architecture it can be performed
by n processors in one only calculus cycle.
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Fig. 6 Intuitive representation (from [77]) of the two errors of under-fitting (left) and over-fitting
(right) at the end of the training phase of the ML algorithm of an ANN, for the discrimination
between two classes (green and red) of objects. Itis evident that the best-fitting (center) implementing
statistically the logical XOR is given by a non-linear function, that a linear function (left) cannot
implement in principle. On the contrary, the over-fitting is given by a function too depending on
the training set and then with null generalization capacity, since it fits also with elements randomly
distributed over the two classes in the training set (Finally, we recall that in any ML algorithm,
to test the results of the training phase, the generalization capacity of the learned classification is
tested on another representative sample of the dataset, distinct from the sampled set used for the
training phase, in the so-called “testing phase” of the ML algorithm. Only after a successful test the
ML ends, and the system is applied to perform its classification task on the whole dataset)

(or “exclusive or” (0110) corresponding to the negation of equivalence (1001) that
is essential for training an ANN for executing classification tasks among objects
belonging to different classes (see Fig. 6), which, on the contrary, it is simple to be
calculated by a standard serial computer.

Moreover, a second criticism to the Rosenblatt perceptron was, if possible, even
more radical. Indeed, the union of disjoint sets of the perceptron is a proper filter
only and only if it is granted that at least one point of the “pattern” in the input
space (corresponding to a given correlation order among the elements (points) of the
input space) falls within one of the disjoint sets of the filter. Indeed, a proper filter is
defined in set theory as a partially ordered set defined on the power set of a given set,
with the exclusion of the empty set. Now, the only way for mathematically granting
this “fitting” of a filter with any pattern designed in the input space is the existence
of a “supervisor” seeing at the whole input space, readapting continuously the filter
for matching different patterns designed into the input space. But in such a way
the perceptron would lose its fundamental property with respect to a standard serial
computer. That s, its pretension of being an effective parallel architecture of calculus.
Now, Minsky’s and Papert’s criticism was so destructive because mathematically
incontestable against the early linear approach to the ANN parallel computing that
this book effectively blocked any attempt in the ANN direction till the 80s of the last
century.
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B4. The Pre-symbolic Approach to ANNs and the “Deep
Learning” in AI Machine Learning

On the other hand, from the neurophysiological point of view, a lot of experimental
evidence was produced during the 70s of the last century, emphasizing the non-linear
and even the chaotic character—in the sense of the dynamic notion of determin-
istic chaos—of the natural NN information processing in the brain (see [78] for
a synthesis). This determined the crisis of the functionalist approach to cognitive
sciences from the standpoint of neurosciences, with the consequent refusal of the
early “Al dogma” for which a linear (probabilistic or not) TM might be always a
faithful model of the neural computational architectures in natural brains.

This determined a paradigm-shift in ANNSs, denoted as the connectionist approach
to ANNSs, and then of the so-called pre-symbolic approach to ML in Al-systems,
versus the early “symbolic” one like in Minsky’s celebrated Al frame theory for
expert systems [79], the ancestor of the actual object-programming techniques. The
connectionist approach, indeed, is aimed at the statistical management of huge bases
of data (“big-data”) with higher-order inner correlations instead of the first order
averages that can be calculated by a TPM endowed with a linear activation function
[80].

Particularly, the so-called backpropagation (BP) machine learning algorithm [81]
seemed to directly solve the core of Minsky’s and Papert’s criticism to Rosenblatt’s
linear perceptron, before all the ability of calculating the logical “XOR” function
that is indispensable for classification tasks [14] (see Fig. 6). What characterizes the
BP architecture as to the linear perceptron is indeed:

1. The presence, beside the only input and output layers of the original perceptron,
of several inner layers of neurons, so to justify the notion of “deep-learning” in
this type of ANN architecture.

2. The presence of a non-linear function (threshold) multiplying the activation
function (i.e., the weighted input summation) of the deep neurons of a BP for a

sigmoid function o (a) = ﬁ, and/or by its close relative, the hyperbolic tangent

function, tanh, instead of the stepwise 1/0 activation function of Rosenblatt’s
perceptron. This latter is effectively the Heaviside function, whose value is zero
for negative arguments and one for positive arguments, and then making linear

the neuron activation function (see Fig. 7).

In a word by using the sigmoid function or the hyperbolic tangent function in
the activation function of the hidden neuron layers, the neuron output can be any
real numerical value between O and 1, so to allow a non-linear characterization
of the neuron statistical outputs, instead of the discrete 0/1 output of the linear
stepwise activation function of the McCulloch and Rosenblatt neurons. This makes
in principle the net able to perform more complex statistical computations, addressing
to higher-order correlations (complex combinations of variables) in the input data
set.
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Sigmoid Function Tanh Function

Fig. 7 Heaviside step function (left), acting effectively as a discrete 0/1 threshold, compared with
sigmoid (center) and hyperbolic tangent (right) functions. It is evident that tanh is a O-centered func-
tion with values between —1 and 1, then satisfying an anti-symmetric relation that, is fundamental
for justifying the set-ordering in mathematical logic

BS5. The Gradient Descent Algorithm in Supervised Machine
Learning

Finally, the statistical output so obtained allows BP to use the stochastic gradient
descent optimization algorithm, for the weight update of the hidden neurons during
the learning phase of such an architecture, and from which its “back-propagation”
name properly derives. Indeed, the supervised learning process of this multilayer
non-linear ANN structure—developing an early suggestion by Paul Werbos [82]—
consists into a stochastic optimization process of error minimization.

That is, the supervised “deep-learning” of the inner neurons of BP is modeled
as the stochastic (random) searching for the global minimum of the “error-function
potential” of the net weight dynamics. Where the error is substantially a Euclidean
distance (effectively a measure of the “mean square error”) between the “desired”
probability distribution, and the “actual” probability distribution outputted by the net
[81]. As schematically synthesized in the Fig. 8, at the end of each training cycle,
the BP algorithm, estimates the error and “back-propagates” it for a re-adjustment
of the hidden neuron weights to reduce the global error at the next step. And so on,
recursively till the global minimum of the error function is reached.

Of course, the blind redefinition of the hidden weights among the different “neu-
rons” each representing a different “variable” of the complex problem at issue, consti-
tutes a big problem for the usage of Al systems as support for decisions implying
social, moral and legal consequences. In fact, it makes non-transparent the data
usage, as well as the motivations for which the system evaluates the legal/moral
relevance of (i.e., “it weighs”) each different components in relationship with the
others as to the final decision. This blindness and opacity of the variable weighing
are two of the main factors that ignited the actual fierce debate on Al ethics, as we
emphasized in this paper.

Anyway, BP is not able in principle to answer properly the second main criticism
of Minsky and Papert to perceptrons. The neurons of the inner layers, indeed, are
connected “all to all” among themselves and overall, with the input neurons. In this
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Fig. 8 Schematic representation of the BP “deep-learning” algorithm, according to which the net
“back-propagates” the error from the desired output onto the weights of the hidden layer(s) in a
random way, so to obtain recursively the global minimization of the error

sense, a connectionist neural architecture based on the BP algorithm is not properly
an implementation of a parallel computational architecture.?!

Indeed, it is mathematically true that the “smoothing” of the Heaviside by a
sigmoid function, working in the BP algorithm as a fixed threshold on the weight
activation function, is able in principle to calculate higher order correlations.??
However, which they are—i.e., which are the disjoint arguments of the XOR—
depends critically on the “slope” of the sigmoid that must be fixed in advance by
the programmer. In fact, the learning process of BP is not on the neuron thresh-
olds but on the weights, and, indeed, if we make varying also the thresholds (i.e.,
the connection topology among neurons) and not only the connection weights as it
happens in natural neurons, the system dynamics becomes immediately chaotic [83].
On the contrary, as we demonstrated elsewhere [65, 84], the dynamic definition of
the sigmoid by the doubling of the degrees of freedom (DDF) between the system
and its environment is precisely one of the main characters of the dissipative QFT
modelling of unsupervised learning both in natural and artificial NNs (see Appendix
D). Not casually, indeed, it is demonstrated that what we observe macroscopically

21 For this reason, Minsky refused to make any substantial correction to the Second Edition of his
Perceptron book published in 1989 [76], vindicating—rightly from his theoretical point of view—
that BP gave no substantial answer to his main criticism against the effective parallel computation
capabilities of the ANN architectures.

22 Indeed, in mathematical analysis, the Taylor series expansion of a tanh (and then of a sigmoid)
function contains in principle all the correlation orders among the elements of a given set, and then
in principle it can include whichever class defined on a given set of elements.
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as a chaotic trajectory in the dynamics state (phase) space, is nothing but the trajec-
tory among different phases of the microscopic quantum field dynamics that can be
controlled by the DDF in dissipative QFT [85].

Then if the total connectivity and the related issue of the “sloping” of the sigmoid
makes not properly “parallel” the BP machine learning, on the other hand, the total
connectivity makes extremely computationally heavy the BP calculations. Indeed,
the possible combinations grow factorially as n! with the number n of the fully
connected hidden neurons involved. This practical limitation determined therefore a
second “latency” period of the ANN approach to ML in Al systems during the 90s of
the last century till the beginning of ours. At that time, the large availability of non-
expensive but computationally powerful (in the matric calculus) graphic processor
units (GPUs) to be arranged in parallel architectures with many nodes is one of the
two factors determining the actual explosion of the Al systems endowed with “deep
learning” algorithms.

B6. The Deep Convolutional Neural Networks as the State
of Art in Machine Learning

The second more relevant factor on which the actual explosion of Al systems
endowed with “deep” ML algorithms was the publication of the paper by Geoffry
E. Hinton and his Colleagues in 2012 on their model of deep convolutional neural
network [86]. This model has successfully worked on the Imagenet database [87],
containing millions of images (today, more than 14 millions). The model consisted
of a convolutional neural network of nine layers of neurons, with 60 million param-
eters and 650,000 nodes that has been trained on about a million distinct examples
of images taken from about a thousand classes.

Indeed, the convolutional neural networks (CNNs) are now the paradigm of refer-
ence in deep learning-based ML models. Or, in other words, CNNs are the main
reason for the current success of deep learning in Al. The distinctive features of
CNNss can be found on any good review paper of this type of connectionist network
(see for instance [77], as one of the more recent and complete), of which there exist
several models for different applications.

What universally characterizes CNNs compared to other connectionist networks
are two fundamental innovations, making effectively more similar this ANN
architecture to the networking of brain cortices:

1. The concept of neuronal receptive field. That is, each internal neuron of the
convolution layers of the network sees only a subset of the respective input set
from the previous layers just as in the original perceptron (see Fig. 5). Effectively
the complete connectivity is only in the final classification layers of the network.
In this way, CNNs can avoid systematically the problem of the total connectivity
among the inner layers of the BP architecture.
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2. The presence of several inner layers of neurons of different types (building
blocks), according to the following general scheme:

e Convolution layers for the progressive extraction of input features by kernel
operations (filtering) that correspond to different abstraction levels. The output
of each convolution operation is multiplied by some nonlinear function (gener-
ally the Rectified Linear Unit (ReLu := f(x)g,r, = max(0, x)), because of
the linearity of the convolution operation itself.?? Effectively in the CNNs
a discrete version of the convolution operation between two functions f[n]
and g[n] is implemented. Practically, each convolution layer contains a set
of convolutional kernels (filters), “which is convoluted with the input image
(with N-dimensional metrics) to generate a map of the emerging common
characteristics of the input as output” [77, p. 523].

® Pooling layers, each after a convolution layer for down-sampling the statistical
output of each different convolution layer, to reduce the size of the output
without losing significant information.

® Final classification layer. Itis the only one with neurons fotally connected with
those of the last convolution layer, and it is endowed with a function of back-
propagation of the error on the convolution layers. In this way, the emergent
property of a CNN during the training phase is that, both the classification
level, and the convolutional levels of feature extraction learn together, so to
make evolving in time the same multi-layered filtering operations (kernels).
This is the adaptive filtering that characterizes the CNNs with respect to the
perceptron, and that is the “secret” of the effectiveness of a CNN architecture
(Fig. 9).

23 The formal definition of the convolution in mathematical analysis is the operation between two
functions which consists in integrating the product between the first value and the second one,
shifted of a given magnitude. Formally, given two functions f (#) and g (¢) defined on the reals R,
the following function is defined as convolution of f and g:

(f xg)) = / f(D)gkt —t)dr = / f—1)g(r)de

where (¢ — ) is the shifting interval. Where the translation is temporal, the convolution practically
corresponds to the cross-correlation operation. It explains, for example, in the visual system of the
human brain, the role of the multiple crossings between the different nervous fibers from the cones
and rods of the retina before converging into the optic nerve. The cross-correlation is effectively a
measure of similarity between two signals, depending on the temporal translation applied to one
of them. In this way, the visual system is able, for example, to extract the feature of the geometric
shape of an object simply by cross-correlating between two different frequencies (colors) of the
light radiation reflected by adjacent zones of the surface of the object and detected in succession
by the cones and rods of the retina. And in fact, the feature of the edges thus extracted becomes the
input of the inner neurons of the famous “area 17” of the visual cortex, which distinguish between
horizontal, vertical, and oblique shapes of the visual object. For this fundamental discovery David
H. Hubel and Torsten Wiesel earned the 1981 Nobel Prize in Physiology or Medicine.
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Fig. 9 Intuitive block diagram of a CNN architecture (from [77, p. 523])

Finally, the error measure for calculating recursively the gradient descent of the
cost function in the supervised learning of a CNN architecture is generally the cross-
entropy function. This is an alternative measure of logarithmic type to the more
classical Euclidean loss function, i.e., the so-called “mean square error” measure,
used in the perceptron and in the BP architectures.’*

B7. The “Deep-Belief”’ Neural Networks, the Unsupervised
Machine Learning and Its Relevance in Machine Ethics

A fundamental component of the training phase of CNN stressed by all the Authors
(see for instance, [77, pp. 535-551]) is the data preprocessing of the training and
test sets (see Note 21). This includes well established statistical techniques such as
the data normalization and the data augmentation, with special care to the correct
parameter initialization of the net.

A multilayer CNN model is indeed generally made up of millions or billions
of parameters, so that the proper initialization of weights at the beginning of the
supervised training process becomes essential to ensure, on the one hand, the rapid
convergence of the model, and on the other hand the accuracy of the result.

Indeed, the simplest initialization technique of zeroing all weights is highly inef-
ficient, so that generally the random initialization using casual matrices (i.e., using
elements sampled from a Gaussian, or from uniform distributions, or from orthog-
onal distributions) is the normal choice. However, the best-performing initialization
strategy of a supervised CNN relies on a second unsupervised ANN to give the
CNN the initial weight values for its supervised training phase. Where we recall
that “unsupervised learning” means a learning process in which the classes in which
distributing the objects are not already defined or labeled, so that we speak of an
“unlabeled learning process”.

24 Indeed, the cross-entropy measure generates the output within a probability distribution p, y €
RV, where p is the probability of each output category, y denotes the desired output, and N is the
number of neurons in the output layer. The probability p of each output class i can therefore be

N
obtained as p; = €%/ Y e%, where % denotes the not normalized output from the previous layer
k=1
of the network. Therefore, the measure of cross-entropy loss H can be defined as: H(p,y) =
— Y yilog p;i, where i € [1, N][77, pp. 534-535].
i
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Among the different models of unsupervised NN, the more efficient ones are
the so-called deep-belief NN proposed by Robert Kozma, Marko Puljic, and Walter
Freeman also because directly inspired to the unsupervised training of our brains
modelled as dissipative systems [67]. Indeed, their unsupervised learning algo-
rithm—giving the name to the model—is based on the principle of a progressive
clustering of significant variables in the input dataset across the different layers of
the network to reduce the number of the degrees of freedom (i.e., the dimensions of
the probability space, in which a given probability distribution can variate) of the
output probability distribution to those significantly corresponding to the degrees of
freedom of the input probability distribution. A QFT version of the same approach
to unsupervised learning—also because directly inspired by the same neurophysi-
ological evidence—can be found in the doubling of the degrees of freedom (DDF)
principle system-environment, discussed in the Appendix A.

For the aims of the present contribution, it is highly significant that suitable unsu-
pervised models of ML are used also in ME for correcting the biases hidden in the
statistical distributions, on which the training phase of autonomous Al systems is
performed, with discriminatory “unfair” effects for the social minorities. The aim
is, indeed, to make these models compliant with ethical criteria of fairness in ME,
in the framework of a relational approach to a value-based deontic logic (see [23,
241]). The issue is well synthesized in the following quotation from a paper recently
addressing the argument.

Algorithmic assessment methods are used for predicting human outcomes in areas such as
financial services, recruitment, crime and justice, and local government. This contributes,
in theory, to a world with decreasing human biases. To achieve this, however, we need fair
machine learning models that take biased datasets but output non-discriminatory decisions
to people with differing protected attributes such as gender and marital status. Datasets
can be biased because of, for example, sampling bias, subjective bias of individuals, and
institutionalized biases. Uncontrolled bias in the data can translate into bias in machine
learning models. [88, pp. 1, 2]

As we explain in the next Section and in Sect. D1 of the Appendix A, and as we
discussed already in [34], we also suggest an approach to satisfy farness criteria in
ML models that, as fair as, concerning data pre-processing, are not implemented as
ethical constraints on the ML optimization procedure. However, differently from the
precedent one that proposes a supervised ML procedure “tuned by-hand” for learning
the fair model, we proposed an unsupervised ML model to data preprocessing for
automatically correcting—i.e., dynamically, without any “fine-tuning” of the vari-
ables by the programmer—the biases in the training dataset, and so granting a “fair”
ML model. Our approach, indeed, applies the DDF principle just introduced as an
unsupervised ML strategy of data preprocessing to implement the core of formalized
Amartya Sens’s theory of fairness. Outstandingly, indeed, it uses mathematically the
maximin principle (max of resources to minus advantaged) as a fair variable aggre-
gation principle by which defining the degrees of freedom—i.e., the dimensions—
of a “fair” social state space of equitable access to social/economic opportunities
(favorable social states).



Deep Learning Opacity, and the Ethical Accountability of Al Systems. ... 61

Indeed, just for this usage of the maximin as a variable aggregation principle,
Sen can define in his mathematically formalized Social Choice Theory (SCT) as
we see in Sect. 3.2, an extended identity axiom between the spaces of social states
of disadvantaged and advantaged groups, balanced into one only “fair” social state
space of opportunity access to favorable social states. Now, also the DDF principle
is physically a balancing principle between two spaces of probability distributions
representing a system and its environment, granting, by a suitable “variable aggrega-
tion” in the resulting merged space, a “fair distribution” of the resources (free energy)
among all the components of such a doubled system (see Sect. D2 in Appendix A).
Not casually, indeed the DDF characterizes the unsupervised learning process of our
dissipative brains interacting with their physical-social environment, modeled in the
Fundamental Physics framework of dissipative QFT [63, 64].

Appendix C: On Sen’s Transformation Mapping of the Set
of Individual States onto the Set of Social States

Synthesizing Sen’s formal demonstration in [14, pp. 210-220], given the set X of
individuals i, j, ..., and the set H of social states x, y, ..., and the Cartesian product
X x H of all possible choices (that grows factorially with the number n of the
individuals), to implement a fairness condition in the basal space of the individual
i € D, where D is a subset of disadvantaged individuals in X, it is sufficient to satisfy
the following condition. That is, to extend the ranking R; of welfare states among
which i can exert her choice, to the extended ranking R; also including the ranking
R; of an individual j ¢ D (non-disadvantaged individual), because in this ranking
there is also the state x that is better than y for i.

Formally, it means to impose the restriction of a one-to-one correspondence from
the set of individuals H to H itself, such that i = p(j), where p is a transfor-
mation mapping the (set of choices of) a person j onto (the set of choices of) a
person i. The restricted set (partition, set disjoint union, or coproduct) of all this
one-to-one-correspondences in X can be denoted as 7 C X and justifies Suppes’
assertion that “x is more just than y according to person i”, xJ; y in a restricted, and
then computable way also when extended from two individuals—Ilike in the Suppes’
case—to n individuals.?’> That is, p is computable in terms of the restricted relation

x0;y < 3dpeT: [Vj s (x, j)Ié,- (v, ,o(j))]. In other terms, given the transforma-

tion p, this justifies the person i in assessing that she prefers to be in the position
x of someone, either j or i herself, than in the position of this same person in y. In

25 Effectively, the number of the possible permutations in which a state x can be more just than y for
n individuals grows as n!. Consider that, in terms of the DDF physical principle, Sen’s restriction
corresponds to the reduction of the number of the degrees of freedom of the two distributions to
only those admitting the balancing principle of the minimization of the distance between a pair of
states. That is, the minimization of the free-energy function (maximum entropy) between a pair of
states (see Sect. A2 in Appendix A).
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other terms, Sen’s x O;y is the necessary and sufficient condition for justifying the
consistency of the finitary computability of maximin principle of fairness in Sen’s
SCT, for whichever number n of individuals.

It is now possible for us to understand the statement of the extended identity axiom
in SCT, as implementing the relational ethics principle of “extended sympathy” as
necessary and sufficient condition for using the maximin as a variable aggregation
principle in SCT on an effectively fair, equitable basis.

Axiom 1 (Axiom of identity) Each individual j in placing himself in the position of
person i takes on the tastes and the preferences of i. That is,

vy e X: Vi [o DRI o Vi s DRG]

A stronger version of the Axiom 1 is the following “axiom of complete identity”
identifying the rankings among all the persons belonging to the partition 7, i.e.:

Axiom 2 (Axiom of complete identity). Vi, j : ﬁf = ﬁf .

It is evident that for making formally consistent in abstract mathematics Sen’s
axioms of extended identity between the “basal spaces” of different social groups
the topological notion of equivalence by homotopy is required.”® Not casually, this
notion of homotopic equivalence is at the basis of the emergent research field of the
computational topology in TCS and then of the fopological data analysis, recently
applied fruitfully also to ML [31].

On the one hand (see Sect. D1 in Appendix A), this conclusion again emphasizes
that the proper logic—in CT metalanguage—of Sen’s relational ethics is within
(the topological interpretation of) Kripke’s modal relational semantics in terms of a
coalgebra of NWF-sets defined on Stone spaces for a modal BAO semantics [33].
In it, partitions (set disjoint unions or coproducts) of admitted (social) states can be
defined as “rooted-trees” of Kripke structures of possible states, so that it is possible to
justify in this formalism a particular implementation of the homotopic equivalence in
computational topology in terms of the notion of bisimulation (symbol: <) between
Kripke’s structures/models (see [54, 89, pp. 53-55]).

Now, as we demonstrated elsewhere [54, 65], given that the properties of topolog-
ical Stone spaces on which the algebra-subalgebras structure of a BAO semantics in
logic, and the topological spaces on which the C*-subalgebras of Hilbert spaces in
(quantum) physics are the same, it is possible to model a modal BAO semantics over

26 Intuitively, in CT metalanguage, two different paths sharing the same endpoints x, y can be said
“homotopically equivalent” if they can be continuously deformed into each other. More formally,
given two topological spaces X and Y, a homotopy equivalence between X and Y is a pair of
continuous maps f : X — Y and g : Y — X such that g o f is homotopic to the identity map
or reflexive morphism id, and f o g is homotopic to idy. If such a pair exists, then X and Y are
said to be homotopy equivalent, or of the same homotopy type. Significantly, a homeomorphism or
isomorphism between topological spaces, is a special case of homotopy equivalence, in which g o f
is equal (and not simply homotopic) to the identity map id, and f o g is equal to id,. Therefore, if
X and Y are homeomorphic, then they are homotopy-equivalent, but the opposite is not true.
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the (topological) coalgebraic structures of a dissipative QFT. In this case, indeed, the
DDF—or “active mirroring” (quantum entanglement) system-thermal bath—acts as
a (thermo-)dynamic selection criterion of admissible sets, for the modal Boolean
logic quantum computations of our “dissipative brains” [90].

On the other hand, it is easy in the light of the precedent discussion to guess
that, just as a physical counterpart of the maximin principle in economy for a fair
distribution of resources is in the “fair distribution of energy”” among the components
of a complex dissipative system balanced with its thermal bath, so Sen’s extended
identity axiom between different subjective basal spaces in SCS (R;, R 7), has in the
DDF principle (A, A) its natural implementation (see Sect. D2 in Appendix D). This
can be used as the basis of an unsupervised quantum ML algorithm inspired to the
dissipative QFT underlying brain network dynamics (see Sect. B7 in Appendix B and
[34]). Or—if we prefer to use the “first-person” jargon of the intentional language for
expressing Smith’s “extended sympathy” principle (see Sect. B1 in Appendix B and
the connected diagram of cognitive sciences of Fig. 4)—, only by mirroring “myself”
in “you” so to be each “the double” of the other, we can constitute a sympathetic

113 (L)

we'.

Appendix D: A QFT Inspired Unsupervised Machine
Learning Algorithm

D1I. The Operator Algebra from Physics to Logic
and Computer Science

In other contributions strictly related with the present one [34, 38, 65], we discussed
at length the possibility of a fruitful modeling of the intentional behavior in human
and artificial agents—strictly related to a “value based” deontic logic—, using the
dissipative quantum field theory (QFT) approach to brain (thermo-)dynamics and
to theoretical computer science (TCS). This modeling must be developed in the
framework of a topological approach to modal Boolean logic [33], based on the
momentous Marshall Stone’s Representation Theorem of Boolean Algebras [55],
from which a BAO directly derives [56, 57] that can be extended to modal BAOs [42,
43, 90], using the unifying framework of the Category Theory (CT) metalanguage
(see [91] for a wider discussion).

What is fundamental for guessing, at least, the core of this passage from physics
to logic, it is sufficient to recall Stone’s powerful mathematical notion of field of sets,
effectively a o-algebra, that is a probability space in which a metric is defined, and
that is typical of the physical system model theory, on which a BAO can be directly
defined. All this can be resumed in the motto: operator algebra from physics to logic,
disclosing an incredible panorama of development for formal philosophy (formal
ontology, formal epistemology, formal ethics), on the one hand, and for computa-
tional topology in TCS, on the other hand. Included the actual growing discussion
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about the development of topological methods of statistical data management and
of ML [31]. See also [54] for a wider discussion of all the theoretical passages just
sketched.

CT, indeed, is able to unify in the same axiomatic framework of the algebraic
(topological) logic of operator algebras, both the mathematical logic of the natural
sciences—of physics, before all—, and the modal logic of the philosophical disci-
plines [33, 58, 59, 91], the deontic logic of ethics included, with evident consequences
for TCS and also for our problem of the ethical accountability of the Al algorithms
and systems. The core of the CT logic (semantics) in its application to TCS is, indeed,
the possibility of interpreting the meaning function [.], i.e., the function mapping a
formula ¢ of the propositional calculus of a BAO [56, 57] over its extension [¢]
“making true” ¢, not on a set-subset ordering like in standard set-theoretic seman-
tics, but (primarily)?’ on a complex algebra A ,i.e., an algebra-subalgebras structure,
so to satisfy the motto of CT logic, “meaning is a homomorphism” between algebraic
structures [33].

Particularly, in Kripke’s modal relational semantics in its algebraic (topological)
interpretation, it is possible to justify:

1. A HOL semantics quantifying over all the truth valuation functions V for
proposition p over world-states w: YV (p, w).

2. OraFOL semantics quantifying over all the possible states w of the world related
with one state, i.e. over a partition (set disjoint union or coproduct) of the universe
[(W). Thatis: Vw(V (p, w)|w €] (W) [89].

Indeed, in the CT metalanguage, Kripke modal relational semantics is defined
over a coalgebra of trees of NWF-sets defined on Stone spaces [92]. More generally,
by using the so-called “Vietoris transformation” as a selection criterion of admissible
sets (set partitions or coproducts), it is possible justifying in CT, the dual equivalence
between the category of coalgebras defined onto topological Stone spaces, and the
category of modal Boolean algebras for the double contravariant application of the
same “Vietoris functor” V/V*, i.e., SCoalg(V) >~ MBAlg(V)* [62, 92]. Indeed, the
core of a coalgebraic semantics of a Boolean algebra in CT logic is the Stone duality
as a particular case categorical duality. Indeed, given the dual equivalence between
a given category C and the opposed category C°P, a statement « defined on C is true
only and only if the opposed statement «°? defined on C°P is also true (see [93] for
more details). In this sense, it is possible to develop a relation ethics, that is, a value-
based deontic logic founded on a deontic interpretation of Kripke’s modal relational
semantics.

The connection with the mathematical formalism of QFT in the framework of
the CT metalanguage is double, as we anticipated in Sect. 3.2. On the one hand, the
topologies of the Stone spaces of the momentous “Stone Representation Theorem for
Boolean Algebras” [55]—on which the extension of the operator algebra approach

27 Indeed, by the application of the so-called “forgetful functor” it is always possible in CT mapping
the category of monoids (one-object algebraic structures) Mon on the category of (pointed) sets
Set, “forgetting” the underlying algebraic structure [93].
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to Boolean logic is based in TCS [56, 57]—are the same of the topological spaces
on which the C*-(sub)algebras of Hilbert spaces are defined, in the operator algebra
formalism of QM and QFT [66, 94]. On the other hand, the other strong connec-
tion is based on the role of the coproducts (disjoint sums) and then of the coal-
gebras in quantum physics—effectively the coalgebras of the Hopf bi-algebras
(algebra-coalgebra), systematically used in the calculations over lattices of quantum
numbers, both in QM and QFT.?® More precisely, coproducts play an essential role
in QFT applied to dissipative systems modelled in far-from-equilibrium conditions
because passing through different phases [95]. This interpretation inaugurated by the
pioneering works of N. Bogoliubov [96, 97] and H. Umezawa [98—100], is the Funda-
mental Physics of dissipative systems, both in the relativistic quantum cosmology,
and in the condensed matter physics, chemical and biological systems included [101].
The Bogoliubov transform, indeed, allows to map between different phases of the
bosons and the fermions quantum fields, making QFT—differently from QM and
from QFT in its Dirac’s “second quantization” interpretation—able to calculate over
phase transitions. One of the main differences between these two QFT modeling is
that while the coproducts for calculating the fotal energy of a superposition quantum
state are defined on a commutative algebraic footing because of the interchangeable
character of the terms (superposed particles) of the quantum state, this commutativity
does not hold in the dissipative case. In dissipative quantum systems this commuta-
tivity does not hold, because the two terms of the coproduct refer to the system and
the thermal bath energy contributions that does not interchange each other and deter-
mining a far-from-equilibrium balanced quantum state. In this case, we are obliged
to speak about non-commutative q-deformed Hopf coalgebras, where g is a thermal
parameter, strictly related with the 6-angle of the Bogoliubov transform [101].

All this allows the possibility in CT logic to demonstrate the dual equivalence
between the category of the non-commutative (g-deformed) Hopf Coalgebras on
Stone Spaces SHCoalg of the dissipative QFT where the Bogoliubov transform in
phsyics acts like the Vietoris transform in logic as a (dynamic) selection criterion of
admissible sets for the coalgebraic semantics of the related BAO, and the category
of the non-commutative (“skew”) modal Boolean algebras with operators MBAIlg
for the contravariant application of the Bogoliubov functor B, i.e., SHCoalg(BB) ~
MBAIg(B)* [54, 65].

This, on the one hand, offers an extension to quantum physics of the powerful
and successful Jan Rutten’s interpretation of the category of coalgebras as a general
theory of dynamic and computational systems, both interpreted as labelled state tran-
sition systems (LTS) [102]. According to this theory, by applying the dual categorical
equivalence algebras-coalgebras for the contravariant application of the same functor
of CT logic, the dynamics of the physical system in which a Boolean logical calculus
is implemented, as far as coalgebraically modelled, directly gives the semantics of
the correspondent Boolean logical calculus in which the program is written.

28 Effectively the Hopf coproducts are systematically used in QFT for calculating the total energy
(sum) of n particles superposed in the same quantum state [104].
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On the other hand, the non-commutative Hopf coalgebras (coproducts), through
the powerful construction of the doubling of the degrees of freedom (DDF: see [101]
and more synthetically [69] for a formal justification), satisfy a dynamic criterion of
choice of admissible sets for justifying in CT logic a coalgebraic relational seman-
tics of a modal Boolean algebra for Kripke models. Moreover, one of the most
successful applications of dissipative QFT is for giving the Fundamental Physics of
the mammalian brain dynamics, interpreted as a dissipative system (the “dissipative
brain”) [63, 64, 103]. This justifies a possible solution of the long-lasting problem in
neurosciences of the “long-term memory traces”, in terms of the coherent oscillatory
behavior of large arrays of neurons also reciprocally very distant, in different areas of
the mammalian brain and therefore that cannot be justified in terms of signals using
synaptic paths. This macroscopically measurable behavior can have its only possible
microscopic physical justification in terms of the long-range correlations (entangle-
ment) of the quantum fields of the molecular components of the brain neuropile.
These phase coherence neural domains, indeed, can coexist without interferences in
the same ground state or “minimum energy condition” (“quantum vacuum condition
(QV))” of a balanced state of the quantum fields, according to the powerful QFT
construction of the QV-foliation |0(0) or) [65, 101]. This suggests the possibility of a
dynamic deep learning strategy in artificial neural networks (ANN) and in Al systems
both in the “supervised” [104], and in the “unsupervised” cases [65].

Moreover, from the cognitive neuroscience standpoint, all this demonstrates that
thermal QFT is the Fundamental Physics of the mind conscious intentionality [50].
This foundation is consistent with Antonio Damasio’s suggestion of interpreting
the notion of homeostasis with the environment, based on complex non-linear self-
regulation processes in biological and neural systems, as the physical basis of “indi-
vidual” and “collective” first-person intentionality [39, 105], in its third-person or
“observational” scientific modelling (biosemiotics) [38] (see Sect. B1 in Appendix
B and Fig. 4).

D2. Applications of the DFF in QFT Unsupervised Learning

In the theoretical framework of thermal QFT for dissipative systems shortly discussed
before, we sketch here a machine learning algorithm inspired to the DDF principle in
dissipative QFT systems, in an optical ANN implementation, using the standard tools
of the correlation interferometry, just as, for instance in the applications discussed in
[106, 107]. In our case, indeed, the DDF principle can be applied in a recursive way,
by using the mutual information as a measure of phase distance, like an optimization
tool of error minimization of the input—output mismatch. In this case, indeed, the input
of the net is not on the initial conditions of the net dynamics but on the boundary
conditions (thermal bath) of the system. Just as it happens in the “deep learning”
of natural brains, modelled as dissipative brains “locked” onto their environment
variations (data streaming). In both cases, indeed, we are faced with the macroscopic
phenomenon of a dynamic phase locking, having at the microscopic level in the DDF



Deep Learning Opacity, and the Ethical Accountability of Al Systems. ... 67

principle of quantum entanglement between the degrees of freedom A of the system
dynamics, and the degrees of freedom A of its environment dynamics its proper
explanation.

Indeed, inspired by the modeling of natural brains as many-body systems, the
QFT dissipative formalism has been used to model ANNs [104, 108], also in the
CT framework of a coalgebraic logic applied to TCS [65]. The QFT approach to
brain studies was originally proposed by Ricciardi and Umezawa in 1967 [109], and
extended in 1995 to include dissipative dynamics by Vitiello [90, 110]. The math-
ematical formalism of QFT (details in [101]) requires that for open (dissipative)
systems, like the brain which is in a permanent “trade” or “dialog” with its environ-
ment, the degrees of freedom of the system (the brain), say A, need to be “doubled”
by introducing the degrees of freedom A describing the environment, according to
the coalgebraic scheme: A — A x A. One is thus led to consider the deformed
Hopf algebra, out of which Bogoliubov transformations involving the A, A modes
are derived. These transformations induce phase transitions, i.e., transitions through
physically distinct spaces of the states describing different dynamical regimes in
which the system can sit. The brain is thus continuously undergoing phase transi-
tions (criticality) under the action of the inputs from the environment (A modes).
The brain activity is therefore the result of a continual balancing of fluxes of energy
(in all its forms) exchanged with the environment. The balancing is controlled by the
minimization of the free energy at each step of time evolution. Since fluxes “in” for
the brain (A modes) are fluxes “out” for the environment (A modes), and vice-versa,
the A modes are the time-reversed images of the A modes, they represent the Double
of the system [90].

From the TCS standpoint this means that the system satisfies the notion of a
particular type of automaton, or Labelled State Transition Machine (LTM). Le.,
the so-called infinite-state LTM coalgebraically interpreted, and used for modelling
infinite streams of data [102]. Effectively, also the QFT many-body systems are
characterized by an infinite number of degrees of freedom. However, the doubling

of the degrees of freedom (DDF) {A, A} just introduced and characterizing a dissi-

pative QFT system acts recursively as a dynamic selection criterion of admissible
because balanced states (minimum of the free energy), and then as an unsupervised
ML algorithm. Effectively, it acts as a mechanism of “phase locking” between the
data flow (environment) and the system. Moreover, each system-environment entan-
gled (doubled) state is univocally characterized by a dynamically generated code,
or dynamic labelling as we see immediately. This means that this system is charac-
terized by an “unlabeled” (memory recording) process, and these two properties—
computing on data streaming, and performing an unsupervised learning—are the two
main differences with the supervised learning algorithms illustrated in Appendix B.

In the model, indeed, an input triggers the spontaneous breakdown of the symmetry
(SBS) of the system dynamical equations. As aresult of SBS, massless modes, called
Nambu-Goldstone (NG) modes, are dynamically generated [111, 112]. They are
boson quanta of long-range correlations among the system elementary components
and their coherent condensation in the system ground state (the least energy state or
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“vacuum”) describes the recording of the information carried by that input. Coher-
ence denotes that the long-range correlations are not destructively interfering. Their
macroscopic manifestations are the observable ordered patterns characterizing the
system behavior. This is controlled by the order parameter, describing the degree
and the specific nature of ordering. It is a classical field since, due to coherence, it
does not depend on quantum fluctuations and the system is said to be a macroscopic
quantum system, in the sense that its macroscopic dynamics and behavior is not
derivable without recourse to the quantum dynamics.

The memory state turns out to be a squeezed coherent state:|0(8)) = Y w;(0)|w;)

to which Glauber information entropy measure Q directly applies [1 lé], with |w;)
denoting states of A and A pairs, 6 is the time- and temperature-dependent Bogoli-
ubov transformation parameter. |0(0)) is, therefore, a time-dependent state at finite
temperature; it is an entangled state of the modes A and A, which provides the math-
ematical description of the unavoidable interdependence between the brain and its
environment. Coherence and entanglement imply that quantities relative to the A
modes depend on corresponding ones of the A modes. From the CT logic standpoint,

this means that a “truth evaluation function” is built-in the {A, A} system.

More analytically, The Bose—Einstein distribution function of the Ay and Ay
modes is determined by the minimization of the free energy: Ny = 1/ (6’3‘” - 1),
with Ny the number of condensed A modes, 8 = 1/kgT, kp the Boltzmann
constant, @ = wj the energy (and similarly for Ny). For simplicity, we write
0 = 0(t, B(t)), omitting dependence of & on time ¢ and temperature 7. The collection

{Nk, Nk; Ny — Nk = 0, for any k] acts as a code (a dynamically generated label)

associated with the information printed by the condensation of the {Ak, Ak} in
10(0)).

In the presence of fermion fields, SBS also leads to the formation of NG boson
condensation modes, with their Bose—Einstein distribution functions. The fermion
modes are also doubled and |0(0) is the tensor product of the (Bogoliubov trans-
formed) fermion states and of the NG boson states. The fermion number in the
fermion state is given by the Fermi—Dirac distribution function: N Fy = 1/ (6’3 @+ 1),
for any k, and similarly for the tilde-fermion mode. Here, as usual, o = wx = ex — U,
with @ = wy = g the energy and p the chemical potential.

We stress that in the QFT dissipative formalism the implicit discreteness in the
on—off (or0/1) algebra, although it may be present at a microscopic level—e.g., in the
fermion and dipole quantum numbers, etc.—it is dynamically converted (through the
dynamical rearrangement of symmetry) into a continuous interval [0, 1] of probability
values. In fact, from the Bose—Einstein and Fermi—Dirac distributions, one can derive
the sigmoid activation function o . For example, in the fermion case, assuming that
Nrpx = latT = 0 and energy &k < i, one finds that the change ANpy due to
thermal effects is given by: ANp, = 1 — 1/(8’3‘" + 1) = 1/(6’3“’ + 1) = o, the
sigmoid function, indeed (formal details in [ 104, 108]). In the boson case, considering
that Ny, = sinh’fand e #® = tanh?4, it is also not difficult to describe the system
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response in terms of the sigmoid function o. However, we must emphasize that in
the present case the value (“slope”) of ¢ is not “put by hand”, but like the “labels”
Ny, Npg depends on the system dynamics, as the strict relationship between these
two magnitudes in the defining formulas above demonstrates.
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