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Abstract. In this paper we analyse the conditions for attributing to AI autonomous systems the 
ontological status of “artificial moral agents”, in the context of the “distributed responsibility” 
between humans and machines in Machine Ethics (ME). In order to address the fundamental 
issue in ME of the unavoidable “opacity” of their decisions with ethical/legal relevance, we start 
from the neuroethical evidence in cognitive science. In humans, the “transparency” and then the 
“ethical accountability” of their actions as responsible moral agents is not in contradiction with 
the unavoidable “opacity” (unawareness) of the brain process by which they perform their moral 
judgements on the right action to execute. In fact, the moral accountability of our actions depends 
on what is immediately before and after our “moral judgements” on the right action to execute 
(formally, deontic first order logic (FOL) decisions). I.e., our moral accountability depends on 
the “ethical constraints” we imposed to our judgement before performing it in an opaque way. 
Anyway, our moral accountability depends overall on the “ethical assessment” or explicit “moral 
reasoning” after and over the moral judgement before executing our actions (deontic higher order 
logic (HOL) assessment). In this way, in the light of the AI “imitation game”, the consistent 
attribution of the status of ethically accountable artificial moral agents to autonomous AI systems 
depends on two similar conditions. Firstly, it depends on the presence of “ethical constraints” to 
be satisfied in their Machine Learning (ML) supervised optimization algorithm during its training 
phase, to give the system ethical skills (“competences”) in its decisions. Secondly – and definitely 
–, it depends on the presence in an AI autonomous system of a deontic HOL “ethical reasoner” 
to perform an automatic, and fully transparent assessment (metalogical deontic valuation) about 
the decisions taken by the ethically skilled ML algorithm about the right action to execute, before 
executing it. Finally, we show that the proper deontic FOL and HOL for this class of artificial 
moral agents is Kripke’s modal relational logic, in its algebraic topological formalization. This 
is naturally implemented in the dissipative QFT unsupervised deep learning of our brains, based 
on the “doubling of the degrees of freedom” (DDF), and then in the so-called “deep-belief” arti-
ficial neural networks for the statistical data pre-processing. This unsupervised learning proce-
dure is also compliant with the usage of the “maximin fairness principle”, used as a balancing 
aggregation principle of the statistical variables in Sen’s formal theory of fairness.     
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DDF Doubling of the Degrees of Freedom 
FOL First-Order Logic 
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ME Machine Ethics 
ML Machine Learning 
NE Neuroethics 
NWF  Non-wellfounded set theory 
QFT Quantum Field Theory 
QM Quantum Mechanics 
SCT Social Choice Theory 
TCS Theoretical Computer Science 
TM Turing Machine 
TPM Transitive Probability Matrix 
UTM  Universal Turing Machine 

1 Introduction: the Ethics of Artificial Intelligence and the 
Machine Ethics 

1.1 The Distributed Responsibility Humans-Machines in Artificial Intelligence 

Recently, L. Floridi and M. Taddeo introduced into the wide debate about ethics in AI 
the notion of distributed responsibility between humans (designers, developers, users), 
on the one hand, and machines (software and hardware), on the other hand: 

The effects of decisions or actions based on AI are often the result of countless interactions 
among many actors, including designers, developers, users, software, and hardware. This 
is known as distributed agency. With distributed agency comes distributed responsibility 
[1, p. 751]. 

More recently, one of us proposed to redefine the notion of “distributed responsibil-
ity” between humans and machines, by distinguishing between the slow responsibility 
of conscious ethical agents such as humans, and the fast responsiveness of unconscious 
skilled moral agents such as machines with respect to the ethical constraints from the 
shared social environment [2]. This distinction extends to Machine Ethics (ME) a sim-
ilar distinction used already in Neuroethics (NE) as to the relationship between the 
slowness of consciousness with respect to the fastness of the related neural processes 
of the human person agency [3, 4]. Indeed, it is the person (i.e., the individual-in-rela-
tionship with her physical-social environment) and neither her mind, nor her brain taken 
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in isolation the proper subject of morally/legally accountable actions [5, 6] (see below 
§ 2.1).

Effectively, the main problem at issue about the actual challenges in moral philoso-
phy related to NE, and Artificial Intelligence (AI) is similar. “Who is the actor of a 
moral act?” or, using the title of a famous M. S. Gazzaniga’s book: “Who is in charge” 
[7]. Now, as N. Levy1 emphasized, what NE teaches us is that neither the conscious 
mind of a human person, nor some part of her brain such as the lobes of the prefrontal 
cortex, as far as both taken in isolation, can be considered as the “controller” of the 
human behavior.  

We needn't fear that giving up on a central controller requires us to give up on agency, 
rationality, or morality. We rightly want our actions and thoughts to be controlled by an 
agent, by ourselves, and we want ourselves to have the qualities we prize. But the only 
thing in the mind/brain that answers to the description of an agent is the entire ensemble: 
built up out of various modules and sub-personal mechanisms. And it is indeed the entire 
agent that is the controller of controlled processes [8, p. 41]. 

In this sense, the same N. Levy suggests that AI systems, as far as considered as 
artificial extensions of the human natural intelligence can be considered among these 
sub-personal mechanisms and modules, in the framework of the so-called extended 
mind hypothesis in cognitive neurosciences (see [8, pp. 29-44]).  

1.2 AI systems as Subjects of Moral agency and the Machine Ethics 

However, V. C. Müller well emphasizes in his recent review paper on Ethics of Artifi-
cial Intelligence and Robotics [9] that considering AI systems as simple extensions of 
the human intelligence covers only one trend of the actual debate about the ethics in 
AI. Namely, the trend concerning the AI systems as objects, that is, as tools made and 
used by humans (individuals, companies, private and public institutions, etc.) as indis-
pensable support of the human decision-making for the management of extremely large 
bases of data (“big-data”).  

The other trend that is more relevant for the ME debate concerns the AI systems as 
subjects and then as artificial moral agents. I.e., as autonomous systems able to make 
fast decisions escaping the slow conscious human control but affecting our individual 
and social lives and then with evident ethical/legal consequences of their decisions. 
Evidently, these artificial moral agents require that they satisfy a suitable ethical/legal 
accountability of their decisions just in the way it happens for the human moral agents. 

Therefore, following Müller’s useful distinction, we have  

Ethical issues that arise with AI systems as objects, i.e., tools made and used by humans. 
This includes issues of privacy and manipulation, opacity and bias, human-robot interac-
tion, automation and employment, and the effects of autonomy. Then AI systems [can be 

1 Neil Levy is professor at the University of Oxford where he is also Director of The Oxford 
Uehiro Centre for Practical Ethics that has in “Neuroethics” and in “AI and Digital Ethics” two 
of the main topics of research. We emphasize in this paper the strict relationship between these 
two research fields, because both have as object the physical bases of ethics (effectively, of 
deontic logic information processing) respectively in natural and artificial neural systems. 
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considered also] as subjects requiring an ethics for the AI systems themselves in machine 
ethics and artificial moral agency [9, p. 1]. 

More analytically the main ethical issues in AI concern: 

1. Issues about privacy and data manipulation. They are the more discussed and easier
to be understood. AI systems are applied wherever there are large databases (“big-
data”) whose management is impossible for humans, and which now with the pro-
gressive informatization of any aspect of our personal, social, and economic lives,
concern the sensitive data of all of us.

• What perhaps escapes most and it is paradoxical but true, is that these systems,
by profiling us and cross-relating the data concerning us every time we use In-
ternet or our smartphones, make an online purchase, access a database, request
an online document, or simply we use an internet search engine, they know our
habits,  attitudes and preferences much better than we know ourselves.

• These profiles are accessible to others and not to us, which creates a big ethical-
legal problem that we should sooner or later face as individuals and as govern-
ments. In fact, these profiles are used systematically in the creation of fakes to
influence specific groups of people, with serious problems on the autonomy of
choices not only in the economic-commercial field, but also in the political-
social field.

• Representative democracies like ours no longer work if the citizen choices are
systematically conditioned in a subtle but real way. Burying our heads in the
sand as we are doing does not solve the problem but exacerbates it. And this
constitutes a real problem for Western democracies in that undeclared but ef-
fective war between democratic and autocratic regimes, in which we are all
sadly involved since many years (see [10] for further discussions).

2. Issues about opacity and bias in the statistical data processing. As it is well known,
the classic expert systems in the automatic processing and classification of data re-
lated to the so-called “symbolic approach to AI” (see § B2. in Appendix B) do not
suffer from this kind of problems. On the contrary, the much more powerful AI sys-
tems that include machine learning (ML) algorithms based on multilayer architec-
tures of neural networks (the so-called “deep-learning”: see §§ B4.-B7. in Appendix
B) systematically suffer from an unavoidable problem of opacity in data processing.
Because of their relevance, these two strictly related issues are the main object of
our paper (see Sections 2 and 3 below).

• In expert systems of the symbolic AI, indeed, the inferential trees for data clas-
sification are defined by the programmer and therefore the path followed by the
system to reach the final decision can be always reconstructed and therefore it
is controllable, or “transparent”.

• This is systematically impossible in ML models based on multilayer neural net-
works, which moreover necessarily emphasize “biases” or "negative propen-
sions" towards certain groups or types of individuals – generally minorities –
eventually present in the statistical data on which the training of the system is
carried out. This raises “significant concerns about lack of due process,
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accountability, community engagement and auditing” in AI systems for auto-
mated decision support [11, p. 18ff.] and it requires the necessity of inserting 
into the unsupervised pre-processing  of the training set in ML algorithms fair-
ness criteria to correct these distortions, as we discuss below (see § 3.2, § B7. 
in Appendix B, and § D2. in Appendix D). 

3. Issues about the human-robot interaction. Although still not too obvious to many 
compared to the previous problems, it is an emerging ethical-legal issue, which will 
become increasingly relevant, as robot usage will be spread on a very large scale.  

• Robots – including self-driving aerial and ground vehicles – are indeed destined 
to support or even replace humans in industry, communications, services (e.g., 
automatic call centers), surgery (surgical robots), high-risk rescue operations, 
and increasingly in military operations (armed drones, robot-soldiers, robotic 
artillery, etc.), all specific fields where they are already widespread. Their usage 
will increase also in many other applications that affect the lives of all of us 
(think at self-driving cars), even the more fragile. On this regard, think at robot 
applications in the nursing care, in the domestic care, and even in the educa-
tional care (i.e., the distance teaching systems endowed with AI engines for 
readapting themselves to the individual student needs). 

4. Issues related to autonomous systems and the ME. It is evident that the discussion 
about AI systems as “subjects of moral agency” and then as “artificial moral agents” 
in ME concerns essentially AI systems, as far as displaying different degrees of au-
tonomy in their decision making, with respect to the human control. As Müller 
properly recalls, 

There are several notions of autonomy in the discussion of autonomous systems. A stronger 
notion is involved in philosophical debates where autonomy is the basis for responsibility 
and personhood [12]. In this context, responsibility implies autonomy, but not inversely, 
so there can be systems that have degrees of technical autonomy without raising issues of 
responsibility. The weaker, more technical, notion of autonomy in robotics is relative and 
gradual. A system is said to be autonomous with respect to human control to a certain 
degree. There is a parallel here to the issues of bias and opacity in AI since autonomy also 
concerns a power-relation: who is in control, and who is responsible? [9, pp. 24-25]. 

• The examples made by Müller of AI autonomous systems about which the moral 
issues are object of fierce debates, both from a technical point of view, and from 
an ethical and juridical perspective are the “self-driving cars” and the “autono-
mous weapon systems” (AWS, e.g., armed drones and robot-soldiers) (see [9, 
pp. 24-29] and the quoted literature about these topics). They are examples of 
high relevance and actuality for our society. 

• Of course, ME – namely, “the ethics for machines as subjects, rather than for 
the human use of machines as objects” – is strictly related to the issues of au-
tonomy and opacity in AI systems. That is, using a quotation of V. Dignum in 
Müller’s paper [9, p. 30], ME is concerned with the ambitious constraints that: 

AI reasoning should be able to take into account societal values, moral and ethical consid-
erations; weigh the respective priorities of values held by different stakeholders in various 
multicultural contexts; explain its reasoning; and guarantee transparency [13, pp. 1-2]. 
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1.3 A Scheme of this Contribution 

The last two quotations of Mülller and Dignum help us to define better what we mean 
by the autonomy of AI systems intended as subjects of moral agency. Then they help 
us for defining properly the notion of distributed moral responsibility between humans 
and machines in terms of the distributed ethical/legal accountability for the rest of the 
society of their decisions/actions because concerning the life and welfare of persons. 
To sum up, in the case of autonomous AI systems, we must speak about the distributed 
ethical/legal accountability between conscious moral subjects and artificial moral sub-
jects2.  

As a premise, it is significant for our aims Müller’s distinction between the “philo-
sophical” – effectively, anthropological – and the “technical” notions of autonomy and 
control in humans and machines.  

On the one hand, autonomy and control are essential components of the human per-
sonhood. Indeed, we can define the personal free-will of humans as “the capability of 
a human person of controlling at different levels her own behavior, in view of the ef-
fective pursuing of a given goal (value) by suitable decisions/actions” (see [5], ch.5) 
and/or in Amartya Sen’s terms “in view of the effective pursuing of a valued and valu-
able state/way of living” [14, p. 356]. 

On the other hand, the “relative and gradual” autonomy of AI systems/robots with 
respect to the human control is strictly related to what Müller defines as the “technical” 
notion of control in artificial systems. This effectively refers to the basic notions of 
Cybernetics, or “(Theory of) Communication and Control in Animals and Machines”, 
according to the title of famous Norbert Wiener’s book [15]. In the § A1. of the Appen-
dix A we recall briefly which are the three main levels of active control in biological 
and artificial systems, emphasizing that the autonomy of AI Systems with respect to the 
human control reaches its higher level when it concerns the same ultimate level of the 
goals supervising the behavior. This is strictly related to the implementation into the 
decision processes of AI autonomous systems – before all in the ML optimization pro-
cess – of deontic logic constraints as necessary condition for attributing them the onto-
logical status of artificial moral agents (see §A.2 in Appendix A). 

Therefore, main object of this contribution is a theoretical justification of the attrib-
ution of the ontological status of artificial moral agents to autonomous AI systems in 
ME by a systematic comparison, in the light of the Turing Test, to the human persons 
as conscious moral agents.  

2 In this connection, it is useful to recall that the notion of responsibility/accountability in moral 
philosophy is also etymologically related to the notion of “responding/accounting to someone 
else” for our actions. Or, in the formal terms of the deontic logic, the notion of responsibility 
consists in justifying the consistency of our actions with respect to the obligations of norms 
ruling our behaviors, for satisfying a given system of values. I.e., a heterarchy (= a hierarchy in 
which the ordering can change [116]) of individual/common goods to be pursued which are 
shared by the members of a given community. In this sense, in the computational implementa-
tion of deontic logic calculations in autonomous AI systems making them artificial moral 
agents, it makes sense speaking about the satisfaction of ethical constraints from the social en-
vironment they share with humans (see below Section 2 and Appendix A for more details).      
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More precisely, an adequate connotation or “descriptive definition” of the autono-
mous AI systems that justifies, in a logically and ontologically consistent way, our ref-
erence to them, as artificial moral agents, requires the fulfilment of the following steps 
that we will examine in the rest of the article. Even though, for not burdening our dis-
cussion, the steps 1-3 that refer to the background knowledge necessary for defining 
the notion of “autonomous AI systems” will be treated in the Appendix A and in the 
Appendix B of this paper. 

1. A connotation of the ethical decision-making autonomy of humans and machines
within the already introduced notion of active control, which is what distinguishes
biological and artificial systems from mechanical systems as passive control systems
(see Appendix A).

2. A connotation of the ethical decision-making autonomy of humans and machines in
the framework of the cognitive science triangulation among a) the intentional states
of the subjective mind, as such inaccessible to other people; b) the physical (neuro-
physiological) states to which they are necessarily related; c) the logical operations
implementable in (b), which expresses (behaviorally/linguistically) the “intelli-
gence” both cognitive and moral of (a), and hence makes it imitable by suitable AI
system models (see § B1. in Appendix B).

3. A connotation of the ethical decision-making autonomy of humans and machines in
the context of the Turing imitation test that is at the origin of the AI research pro-
gram. With the consequent distinction between: a) the symbolic AI systems or “expert
systems” because they simulate in the explicit inference tree of a program the ability
of a human expert (see §B.2 in Appendix B); and b) The pre-symbolic AI systems
because they are equipped with ML algorithms based on different models of multi-
layered ANNs (deep-learning). Indeed, the vastness of the databases (big-data) on
which they apply excludes its treatability by any human expert, making these sys-
tems indispensable to our society (see §§B.3-B.7 in Appendix B).

Now, precisely this class of autonomous AI systems endowed with multilayered ML
models display the problems of opacity and unfairness in their decision processes that, 
as we anticipated in § 1.2, are the two main issues to solve in ME (see item 2. in the 
list). Therefore, in the next two Sections of this work, these two problems and their 
possible solutions in ME are discussed. In other words, the proper attribution of a sub-
jective moral agency to autonomous AI systems in comparison with the moral agency 
of the human subjects requires the fulfillment of these further two steps: 

4. A connotation of the ethical decision-making autonomy of humans and machines,
and of their accountability, despite the intrinsic opacity of the decision processes in
both. In other terms, the two conditions of transparency that the human moral agents
must satisfy to grant the ethical/legal accountability of their decisions/actions when
they concern the life and the welfare of other persons, despite the intrinsic opacity
of the human decision processes must be satisfied also by autonomous AI systems
in similar conditions. To the illustration of this fundamental opacity issue and of its
solution both in humans and machines is devoted the Second Section of this paper.

5. A connotation of the ethical decision-making autonomy of humans and machines as
able to perform fair moral judgements/decisions, so overcoming the discriminations
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towards persons and groups present in the linguistic/social/cultural environments of 
which they are parts. To this issue in ML models and to its possible solution accord-
ing to Amartya Sen’s theory of “justice as fairness” we dedicate the Section 3 of our 
paper and the related Appendixes C and D.        

2 The Autonomy and the Opacity Issues in Machine Ethics and 
the “Imitation Game” in the AI Research Program 

2.1 The Contribution of Neuroethics To Solve the Problem 

In this section we discuss mainly the issue of how granting the ethical/legal right to 
transparency with respect to the decisions of autonomous AI systems if this transpar-
ency is technically impossible in these systems. 

To solve this typical conundrum of the “distributed responsibility” humans-ma-
chines, the extension to AI systems of the neuroethical distinction between the fast un-
conscious responsiveness of our brains to environmental constraints and the slow con-
scious responsibility of our minds becomes essential3. For this aim, it is useful to report 
here the following example used by N. Levy in his book about the relationship between 
consciousness and moral responsibility in cognitive neurosciences, in the light of neu-
roethics (NE) [6]. The example concerns the issue of the moral responsibility of a highly 
skilled – very well “trained”, indeed – human driver such as the famous racing driver 
Ayrton Senna. 

It is characteristic of conscious processes that they are much slower than nonconscious; 
the rapid responsiveness of highly skilled agents like (…) Senna must certainly be driven 
by the latter and not the former. It therefore seems false that agents must be conscious of 
the information they respond to in order to be responsible for how they respond to it. (…) 
Direct moral responsibility requires that a creature conscious agent be conscious of the 
moral significance of their actions [6, p. 114.121] (Italics are ours). 

In this way, Levy introduces into the neuroethical debate the fundamental distinction 
between the moral responsibility of conscious communication agents such as human 
persons, versus the fast responsiveness of their brains. But also, versus the (much faster) 
responsiveness of AI decision supports we use, which can be both (brains and ma-
chines) included in the category of sub-personal modules of actions for which we, as 
persons, are morally responsible. 

This distinction, however, can also shed light on the issue of autonomous AI systems 
equipped with ML, understood not as objects but as unconscious subjects of morally 
relevant decisions, or more precisely as highly trained artificial moral agents, through 
ML techniques – think at self-driving cars –, destined to become a significant part of 
our society. 

3 The implicit reference is to the neurophysiological evidence that the action potentials of the 
neuron circuits involved in an intentional decision/action in human brains reach their maximum 
some till some tenths of seconds before the conscious component of an intentional state (see [3] 
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In other words, in his book Levy emphasizes that in the human production both of 
cognitive and of moral judgements – formally, logical valuations/decisions “true/false” 
(1/0), in alethic and deontic modal logics, respectively (see § A2. in Appendix A) – 
what is “transparent”, i.e., conscious to us and eventually “transparent” and then “ac-
countable” to others, is what is before and after the production of the judgement (deci-
sion) itself that as such is absolutely unconscious and then “opaque” to everybody, just 
as it happens to autonomous AI systems endowed with deep ML.  

In this sense, we can say that these systems with their intrinsic opacity are “the win-
ners” of the “imitation game” [16] on which the AI research program is based since its 
origins in 1956 [17], much more than the symbolic AI systems, whose decision process 
is generally “transparent”.   

Indeed, when we produce a moral judgement about an action and/or a choice that 
we must execute, what is “conscious” (“transparent” to us, and eventually to others as 
far as we communicate it ) is only what precedes and follows  the moral judgement/de-
cision as such. Indeed, we can distinguish three steps in any human moral judge-
ment/decision (see [5], ch. 5 for more details): 

1. At first, we consciously examine the different components of the action/choice that
we are going to evaluate by a moral judgement over it. That is, we consider mainly
the past similar situations, the actual concrete situation, the future practical conse-
quences of our action/choice, and of course also the abstract moral norms that should 
rule our action.

2. Afterward, by combining through an unconscious process these and other compo-
nents not considered at the first step (before all emotions, as NE taught us [18]), we
produce our moral judgement (i.e., we make our deontic first order (FO) evaluation)
about the action/choice we want to execute.

However, being truly responsible of the moral significance of our actions requires
that, before executing our action/choice, 

3. As a third step, we make consciously a sort of “moral auditing to ourselves” about
our moral judgement (i.e., we perform a deontic higher order logic (HOL) reason-
ing/assessment) for evaluating whether effectively this judgement/decision (deontic
first order logic (FOL) decision) we produced about the right action to execute, sat-
isfies all the moral constraints we imposed to it – and eventually other moral con-
straints we did not consider. Our moral responsibility becomes in such a way an act
of “transparent” moral accountability for justifying/explaining also to others and not
only to ourselves the morality of our decisions/choices. Formally, this “moral audit-
ing” of our moral judgement/decision about the action to execute is a “valuation of
our valuation”, that is, it consists into a metalogical evaluation of our deontic FOL
decision process, requiring formally a deontic HOL (see [19] and the Conclusions
of this contribution)4.

4 Formally, only Kripke’s relational semantics in mathematical modal logic in its algebraic (top-
ological) interpretation of a modal Boolean algebra with operators (modal BAO) (see § D1. in 
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In this way, we, as conscious moral agents, can fully satisfy the moral/legal account-
ability to the social community of our decisions/choices/actions, because only at this 
third step we are able of formally justifying/explaining the morality/legality of our de-
cisions/actions/choices. At the same time, we also satisfy in this way the right-to-trans-
parency to other human subjects, whose lives are eventually influenced by our deci-
sions/choices/actions.   

2.2 The Double Condition to Satisfy for a Consistent Attribution of an 
Accountable Moral Agency to AI Systems in Machine Ethics 

To sum up, the solution of the fundamental issue in ME of how attributing consistently 
moral agency to artificial unconscious agents, and specifically to highly trained AI sys-
tems requires that they satisfy two conditions: 

1. The “transparent” implementation in the supervised ML algorithms of ethical/legal
constraints. That is, error minimization algorithms satisfying also ethical conditions
[20]. In this sense, the so-called “consequentialist” or “value based” approach to
deontic logic [21] seems to be more suitable for being directly implemented in ML
algorithms since in both cases a cost function is to be minimized5, than the so called
“virtue ethics” approach [22]. Indeed, the value ethics is also denoted as consequen-
tialist because formally satisfying the following modal logic scheme: “if you want
to pursue factually this goal (value), you must do this”. For instance, in the case of
AI autonomous systems for trading in the financial markets – now covering a larger
part of fast trading operations (about 40%) all over the world – a “good” ML algo-
rithm for trading means that it is not based only on the maximization of profit, but
also on the satisfaction of given ethical clauses (e.g., investments not deriving from
illegal origins, not based on the exploitation of the workers, etc.).  Finally, the value-
based deontic logic is compliant also with the implementation of “fairness condi-
tions” in the data pre-processing by an unsupervised ML, for avoiding the unwanted
“bias” in the training data set of supervised ML, leading to “unfair” decisions of the
ML algorithm based on biased data (see [23, 24]  and below § 3.2).

2. The implementation in autonomous AI systems of an automatic ethical/legal audit-
ing to check in a transparent way whether the decisions taken by the system effec-
tively meet the ethical criteria set in the ML algorithm. And/or, in the case of sym-
bolic AI systems, the ethical criteria implemented in the decision tree of the program.

Appendix D) admits both FOL local semantics, and HOL total semantics, given that Boolean 
logic is the only “guarded decidable fragment” of FOL. Indeed, the semantics of a Boolean 
algebra requires partially ordered sets defined on a topological Stone space [56], and then it can 
be defined also on Non-wellfounded (NWF) sets [33, 63]. In them, no total set ordering is ad-
mitted but several set trees of partially ordered sets sharing the same root  (see [90] for further 
details). The usage of NWF-sets is of course compliant for implementing models of deontic 
logics for a pluralistic society like ours, characterized by different partial orderings of ethical 
values (see §A2. in Appendix A).  

5 On this regard, see below § A2. in Appendix A, where it is evident that the ethical obligation in 
a “value ethics” requires the satisfaction of an optimization (maximization) condition. 
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Only recently the researchers in AI started to study this fundamental component of 
ME, requiring a HOL for a metalogical valuation of the effectiveness of the deontic 
logic algorithms implemented in the ML program and/or in the inferential tree of 
symbolic AI systems (see [19] and below § 2.3).       

2.3 The Implementation of an Automatic Ethical Auditing in AI Systems 

As we have seen in § 2.1 the ethical/legal auditing just recalled is the way in which the 
human moral/legal agents satisfy the right to transparency of the other human subjects 
and of the whole society as to our decisions, given the unavoidable opacity character-
izing the human minds in taking their decisions. Or, in other terms, this self-auditing 
(“ethical reasoning” as distinguished from the “ethical judgement or decision”) for jus-
tifying the morality/legality of our decision is the way by which we as human persons 
satisfy the obligation to accountability of our decisions/actions to everybody, ourselves 
included, making us fully responsible moral/legal agents. Precisely this transparent 
automatic self-auditing is what till now was lacking to autonomous AI systems for fully 
justifying the ethical accountability of their decisions and then their definition as arti-
ficial moral agents in ME.   

From the formal standpoint of the Theoretical Computer Science (TCS), the imple-
mentation of an automatic ethical/legal auditing of the decisions taken by an AI system 
requires a deontic HOL for performing the metalinguistic analysis of deontic con-
sistency of the decisions. This requires the support of automatic demonstrators special-
ized in tasks of deontic logic of higher order than the first [19]. 

Although unknown to the public because they are used almost exclusively in the 
field of pure and applied logical and mathematical research, systems of this type exist 
since many years for the metalogical analysis using a HOL of FOL inferences in logic 
and mathematics.  

These HOL systems are widely used for demonstrating/analyzing particularly com-
plex logical/mathematical theorems [25] but overall, they are applied for the formal 
consistency analysis of decisions performed by complex automatic control systems that 
require a very high degree of robustness to error. Indeed, because they are used in very 
delicate fields, an error or inconsistency of the program would have catastrophic con-
sequences, not repairable. These systems therefore perform meta-controls for the anal-
ysis of safety and reliability of particularly delicate automatic control systems before 
their commercialization / application in the field. 

This analysis in TCS is denoted as functional programming, or more exactly,  as 
“functional analysis of programs”.  
• Think, for instance, at the systems for the automatic control of the landing of air-

crafts by the autopilot. Effectively, during landing, the pilot always gives the con-
trols of the aircraft to the automatic landing control system managed by the control
tower of the airport, so that – with the human support of the air traffic controllers
– the pilot remains only for emergency interventions.

• Or think at the programs for the automatic remote-controlled points in railway
stations; or think at the programs for the control systems of space travels, of nu-
clear plants, of large industrial complexes, of large (electricity / gas) power
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distribution networks, of large telecommunication networks, where the net re-
sources must be allocated and reallocated continuously, according to the degree of 
occupation of the network at various times and situations, and so on. As we see, 
these automatic control systems govern ever larger parts of our daily lives and the 
issue of the automatic continuous check of their reliability/safety/security is fun-
damental. 

Only, recently, due to the tumultuous development of ME problems, the new TCS 
research sector has opened for the design and engineering of meta-control systems in 
the field of ethical reasoners, normative theories, and deontic logics.   

As Christoph Benzmüller of the Freie Universität Berlin – one of the world's leading 
experts in the field of automatic theorem demonstrators using HOLs [25] – and his 
colleagues summarized at the beginning of their review article on this new field of re-
search, “the main motivation is the development of appropriate tools for the control and 
management (governance) of intelligent autonomous systems” [19, p. 1]. Effectively, 
what they present in their paper is not a model but a development tool for programmers 
named LogiKEy – Logic and Knowledge Engineering Framework and Methodology – 
“for the design and engineering of ethical reasoners, normative theories and deontic 
logics”. Without entering in further technical specifications, the proposed architecture 
is based on the semantic incorporation of logical calculations and theories that belong 
to a (specific) ethical-legal domain, within a classical HOL framework – effectively, 
Alonso Church’s type theory [26]. 

Figure 1. Schematic representation of the proposed ethical reasoner for the automatic ethical 
auditing of AI autonomous systems. (from [19], p. 3). 

As intuitively represented in Figure 1, the displayed architecture for an intelligent 
autonomous system with explicit ethical competency distinguishes the explicit ethical 
reasoner with its ethico-legal domain theories (= meta-controller sub-system) from the 
AI reasoner/planner (= controlled sub-system) and from other components. They also 
include the application data and knowledge available to both reasoners (sub-systems). 
The ethical reasoner takes as input the suggested actions from the AI reasoner/planner 
and hints to relevant application data and knowledge, as well as to a given ethical-legal 
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domain theory. Then, it produces as output assessments and judgements concerning 
which actions are acceptable or not, and it also provides the corresponding explana-
tions. That is, the actions suggested by the AI reasoner (controlled sub-system) in Fig-
ure 1 are not executed immediately, but additionally assessed by the ethical reasoner 
(meta-controller subsystem) for compliance with respect to the given ethico-legal do-
main theory. This assessment is intended to provide an additional, explicit layer of ex-
planation and control on top of the AI reasoner, which already comes with solid own 
ethical competency [19, pp. 2-3].  

In other terms, deontic HOL systems such as the “explicit ethical reasoner” just out-
lined fully satisfy the second condition we defined for ethically/legally accountable AI 
systems interpreted as artificial moral agents. What is relevant in the architecture out-
lined is that its metalinguistic consistency analyses can be applied to different deontic 
logic models, i.e., to different ethico-legal domains.  

Moreover, the autonomous AI system (AI reasoner) whose decisions are the input 
of the ethical reasoner can be, either of the symbolic type, or of the pre-symbolic one. 
That is, its own “ethical competency” assessed by the ethical reasoner can be imple-
mented, either as deontic logic algorithms in the decision-tree of its program, or as 
ethica/legal constraints imposed to the optimization function in which any supervised 
ML algorithm ultimately reduces itself.  

Finally, the ethical reasoner metalogical assessments, not only are fully explicit be-
cause no ML algorithm can be implemented in it just as for whichever HOL system 
(i.e., it is always an AI system of the symbolic type) but it is able to give suitable “ex-
planations” of its assessments over the ethical/legal evaluations of the AI reasoner un-
der scrutiny. In this way, it fully satisfies the “right to transparency” that the society 
must pretend from the autonomous AI systems.      

3 Relation Ethics and the Fairness Issue in Machine Ethics 

3.1 Relation Ethics and Fairness in a “Liquid Society” 

Let us consider now the fifth condition in the list defined in § 1.3 for the consistent 
attribution of the ontological status of autonomous moral agent both to humans and 
machines. That is, the capability of performing fair moral judgements/decisions despite 
the discriminations presents toward individual and groups in the social environment of 
which they are part, and on which their education/training depend.  

The necessity of implementing in ethically accountable AI systems fairness ethical 
criteria to avoid biases in the statistics on which the training phase of a ML model is 
performed has been recently defined as the necessity of avoiding unintended but real 
“algorithmic injustices” [27]. Avoiding these problems requires, indeed, “developing 
and deploying ethical algorithmic systems” satisfying a relational approach to ethics.  

Effectively, when the standard statistical 

…machine learning systems that infer and predict individual behaviour and action, based 
on superficial extrapolations, are deployed into the social world, various unintended 
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problems arise. These systems ‘pick up’ social and historical stereotypes rather than any 
deep fundamental causal explanations. In the process, individuals and groups, often at the 
margins of society that fail to fit stereotypical boxes, suffer the undesirable consequences. 
Various findings illustrate this: bias in detecting skin tones in pedestrians; bias in predictive 
policing systems; gender bias and discrimination in the display of STEM career ads; racial 
bias in recidivism algorithms; bias in the politics of search engines; bias and discrimination 
in medicine; and bias in hiring, to mention but a few [27, p. 1]. 

This means that AI algorithms, when applied to automated supports for decision-
making processes in the social, political, and economic sphere are not at all “value-
free” or “a-moral”. The “relational ethics approach” in developing an ethically account-
able AI is indeed based on the evidence that “neither people nor the environment, are 
static; what society deems fair and ethical changes over time” [27, p. 6]. And, we add, 
“over space too”, in the sense that they change for the different groups composing a 
society. Before all, for the minorities and/or for all the marginalized groups also when 
numerically consistent, often not having the same welfare opportunities, often sharing 
different value systems, as well as different criteria of personal flourishing as to the rest 
of a society. This continuous variability over “space” and “time” of the value systems, 
of the welfare opportunities and then of the fairness criteria, as well as over the group 
composition in which the different values systems and welfare opportunities are em-
bedded is indeed what characterizes our liquid society and its many legal and ethical 
issues [28]. 

3.2 The Relation Ethics in Sen’s Theory of Comparative Justice as Fairness 
and its ML Implementation 

Recently, Pratik Gajane and Mykola Pechenizkiy, in a review paper dedicated to the 
formalization of different fairness criteria in ML algorithms [23], complained the lack 
of formalization in the ML literature of Amartya Sen’s (Economic Sciences Nobel 
Prize, 1998) approach to justice as fairness, in the framework of his comparative theory 
of distributive justice. This lack in ML research occurred despite the relevance of this 
theory that, for instance, has been used in several documents of the United Nations in 
the foundations of human development paradigm. What characterizes Sen’s approach 
to fairness, for instance with respect to other approaches identifying fairness with the 
“equality of opportunities”, is that 

variations related to the protected attributes like age, sex, gender, race, caste give individ-
uals unequal powers to achieve goals even when they have the same opportunities. In order 
to equalize capabilities, people should be compensated for their unequal powers to convert 
opportunities into “functionings” or “suitable states of being and doing”. (…) Crucially, 
the notion of equality of capability calls for addressing inequalities due to social endow-
ments (e.g. gender) as well as natural endowments (e.g. sex), in contrast to the equality of 
resources [23, p. 4]. 

Effectively, for making some steps in the direction of formalizing Sen’s theory of 
fairness in ML algorithms it is useful to start from its logical formalization in the context 
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of the so-called social choice theory (SCT) [29, 30], of which Sen himself was one of 
the founders6, together with another Nobel Prize in Economics, Kenneth Arrow.  

When a group needs to make a decision, we are faced with the problem of aggregating the 
views of the individual members of that group into a single collective view that adequately 
reflects the “will of the people”. How are we supposed to do this? This is a fundamental 
question of deep philosophical, economic, and political significance that, around the mid-
dle of 20th century, has given rise to the field of Social Choice Theory [30, p. 333]. 

As Sen synthesizes in his Nobel Lecture, 

SCT provides a general approach to the evaluation of, and choice over, alternative social 
possibilities (including inter alia the assessment of social welfare, inequality, and poverty). 
(…) If there is a central question that can be seen as the motivating issue that inspires social 
choice theory, it is this: how can it be possible to arrive at cogent aggregative judgments 
about the society (for example, about “social welfare”, or “the public interest”, or “aggre-
gate poverty”), given the diversity of preferences, concerns, and predicaments of the dif-
ferent individuals within the society? How can we find any rational basis for making such 
aggregative judgements as “the society prefers this to that” or “the society should choose 
this over that” or “this is socially right”? [31, pp. 128-129]. 

From the logical standpoint, it is evident that we are in the framework of a relational 
deontic modal logic, concerning alternative possible states of the social world that are 
partially ordered according to different rankings, depending on different physical, po-
litical, economic situations, but also on different value systems. I.e., different rankings 
of social states, which are satisfying different maximality – not “optimality”, that is 
“maximally good for all the different context” and that as such is not finitarily comput-
able – criteria of goodness for the different individuals and groups7. From a formal 
standpoint, this means that we are in the Category Theory (CT) framework of compu-
tational topology applied to ML [32].  

Logically, we are indeed in the framework of the algebraic interpretation of Kripke’s 
relational modal logic, based on topologies of Non-wellfounded (NWF) sets [33], in 
which no set total ordering is admitted but different trees of partially ordered  sets 
sharing the same root. This allows to define several FOL local semantics of modal 
Boolean Algebras with Operators (BAOs), each defined on a different partition of a 
given universe of possible world states (see [34, 35] for more details, and synthetically 
§ D1. in the Appendix D).

Indeed, generally, Sen’s SCT distinguishes among the different social theories of
justice in economy and in politics, in terms of the basal space of the main variables 
with which each theory is concerned, and in terms of the aggregation principle of such 

6 Indeed, Sen decided to dedicate his Nobel Lecture to illustrate this novel discipline, conscious 
of its relevance for the future of the social, economic, and political sciences. Indeed, it applies 
the axiomatic method also to them, and to their mathematical and experimental statistical tools, 
so to make them properly “sciences” according to the modern Galilean sense of the term. In few 
words, SCT is the branch of formal philosophy concerning the social world [30]. 

7 In this sense, the implementation of Sen’s theory requires Kripke’s relational modal logic in its 
deontic interpretation, in which local truths are allowed, as far as coalgebraically modelled over 
topologies of partially ordered sets (see § D1. in Appendix D).   
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variables characterizing each theory, and then discriminating between just/unjust states, 
on which the consequent social choices are justified.  

For instance – to understand the utility of Sen’s approach to SCT for formalizing 
different ethical and political theories in social science – in the utilitarian theories of 
justice typical of the liberal economy [29, pp. 139-140], the “basal space” consists “in 
the combination of the utilities of the different individuals, and nothing else – rights, 
freedoms, opportunities, equal treatments – is valued except for instrumental reasons”. 
Consequently, the “aggregation principle”, discriminating between just and unjust 
states in such theories is the simple “utility sum-total” for assessing the social state 
(“sum-ranking”), without considering other relevant factors, such as measures of “dis-
persion”, or of “inequalities in accessing to opportunities”, etc. 

Sen’s theory of the comparative distributive justice, on the contrary, substitutes the 
abstract and ineffective Paretian equality principle typical of the classical liberalism8 
with an equity or fairness principle that he borrowed from his main teachers: Aristotle, 
Adam Smith, and overall, John Rawls [36]. Sen’s fairness theory, indeed, starts from 
the concrete evidence that groups and individuals do not share the same access to eco-
nomic commodities and utilities, and do not have the same possibility of influencing 
the social choices. This depends not only on “manifest injustices” in the society, either 
on a national or international extension, but also on different ethical principles, and then 
on different evaluations of how the economic utilities and commodities are functional 
to “valuable and valued ways of living and behaving” or functionings in Sen’s jargon, 
in view of the flourishing of the different personal capabilities.  

Therefore, the “basal space” of Sen’s theory of justice consists, 

in the set of combinations of functionings from which the person can choose any one com-
bination. Thus, this “capability set” stands for the actual freedom of choice a person has 
over the alternative lives that he or she can lead [29, p. 357].      

The “aggregation principle” in Sen’s distributive theory of justice is the Rawlsian 
famous fairness criterion of the maximin  [37, p. 266]. That is, assigning more resources 
to the less advantaged individuals and groups in the society, to level the inequalities 
derived from “the natural lottery” theorized by Adam Smith, which blindly distributes 
talents, resources, and access to opportunities.  

The main difference with Rawls’ theory of “justice as fairness” [122], consists in the 
comparative character of Sen’s theory. This ultimately depends on the fact that the 
maximin principle in Rawls’ theory concerns the just institutions [118], while in Sen’s 
theory the principle must work as an aggregation principle of variables in a SCT (see 
[29] and [10] for more details). This means that, while in Rawls the maximin principle
is intended according to the Kantian normativism (i.e., supposing the absolute character
of all moral norms, for all possible contexts), and for which Rawls supposes a

8 According to this equality principle whichever individual or group in the society have the same 
possibilities of accessing/enjoying the basic liberties, as well as the economical utilities and 
commodities, and then they have the same possibilities of influencing the social choices/assess-
ments (see [38] for a systematic usage of this principle in SCT). It is evident the unrealistic 
character of this principle that is at the basis of the theory of liberalism and that is the formal 
root of its crisis in our liquid society (see [10] for a wider discussion)! 
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hypothetical “original position” in which an (ascetical) “veil of ignorance” is posed 
over all the subjective differences among humans and groups, so to consider all on the 
very same footing [37, 38], in Sen’s SCT based on the interpersonal comparison of 
welfare states, we start from the relevance of the subjective differences [10]. These in-
clude not only the injustices and the inequalities in the resource distribution/access, but 
also the ethical and the cultural differences and preferences, the religious beliefs and 
even the personal tastes. 

In this connection, one of the main results formally obtained by Sen in SCT is his 
demonstration that the inconsistencies derived from the usage of the Rawlsian maximin 
principle in SCT ultimately reduce themselves to the usage of the Paretian axiom of 
equality (see note 8) in assessing the different welfare rankings in a SCT inspired by 
maximin fairness criteria. Sen demonstrated, indeed, that this axiom is the formal root 
of whichever “impossibility theorem” in SCT [37], the famous “Arrow’s impossibility 
theorem” included [38], with its troubling consequences for the same notion of repre-
sentative democracy, and that ignited a wide discussion in SCT literature9.  

In Sen’s theory, indeed, the Paretian axiom is substituted by the axiom of extended 
identity among individual positions, by which the maximin fairness criterion becomes 
an effective principle of variable aggregation, based on the comparison between differ-
ent individual positions in different situations, so avoiding the systematic risk that a 
uniform application of the maximin becomes a source of effective injustice and of eco-
nomical regression10.   

This axiom wants to be a formal version of Adam Smith’s extended sympathy prin-
ciple, in the sense of “placing oneself in the position of another”, extended to a society 
of individuals (see [29, pp. 210-220]). Sen gave a formal version of this principle in 
terms of an axiom of extended identity among n distinct welfare rankings and relative 
positions of persons and groups in SCT. Indeed, as far as the SCT in Sen’s quantitative 
approach allows a comparable grading of “gains” and “loss”11 of commodities and 
utilities for different persons and groups in different social positions, the axiom of “ex-
tended identity” allows us to use the maximin principle on a relative and not absolute 

9 Roughly speaking, Arrow’s Impossibility Theorem demonstrates formally in SCT that, given 
the Paretian axiom of equality, no shared ranking of welfare states and then of social choices is 
possible without some form of dictatorship. In this way, the early fame of the young Sen de-
pends on the publication of his formal demonstration that Arrow’s impossibility theorem is ef-
fectively a “a theorem of impossibility of a Paretian liberal” [37]. 

10 Recently, because of the economical emergencies related with Covid-19 pandemic, all govern-
ments in the world applied uniformly the maximin principle for restoring at least partially the 
incomes of individuals and companies. However, it is evident to all that without applying com-
parative discriminative criteria (variable aggregations) among the different positions, this type 
of supports is not only economically unsustainable in the long-term, but also source of injustices. 

11 Effectively, as explained at length in the Chapter 9 (pp. 203-209), and in a formalized way in 
the Chapter 9* (pp. 210-218) of [29], Sen is here referring to a fundamental contribution of 
Patrick Suppes to SCT, in a paper published in 1966 [115], where he developed formally a 
“social decision function” based on the principle of a grading of different level of justice, on an 
interpersonal and then equitable basis, even though applied only to a two-individuals case. I.e., 
Suppes’ rule is not properly a social choice function.     
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basis as an aggregation principle of different welfare rankings, for consistently as-
sessing fair social rankings of welfare states.  

That is, whichever ranking is only a partial ordering of social welfare states, because 
no total ordering (complete ranking) might ever exist, like in Rawls’ normativism, or 
like in a SCT applying the Pareto unanimity axiom such as Arrow’s social welfare 
functions. On the contrary, Sen’s application of the maximin criterion gives us a suita-
ble quantitative parametrization of the welfare aggregates involved.  

For this aim, Sen extended the quantitative comparative justice grading of Patrick 
Suppes to n individuals (see note 11) because it allows to include coherently in the 
model both an utilitarian and a maximin criterion for variable aggregation overcoming 
the limits of both. 

If (the social state) x is more just than (the social state) y in the sense of Suppes (with the 
extended identity axiom imposed), then x must have a larger welfare aggregate than y (util-
itarian relation) and also the worst-off individual at x must be at least as well-off as any 
individual at y (maximin relation) [29, p. 208]. 

The axiom in its formal version within SCT is illustrated in the Appendix C of this 
paper. Anyway, this conclusion of Sen is particularly significant for our aims. 

The capability approach is entirely consistent with reliance on partial rankings and limited 
agreements. The main task is to get the weights – or ranges of weights – appropriate for 
the comparative judgements that can be reached through reasoning, and if the result is a 
partial ranking, then we can make precisely those judgements that a partial ranking allows 
( [29], p. 369). 

Where, of course, Sen’s “reasoning” in ME is not only the human one but also the 
“AI reasoning” of ML models of SCT, in which the degrees of freedom12 of the proba-
bility distribution of utilities and commodities among the different groups of individu-
als satisfy a maximin fairness criterion of variable aggregation in the sense just ex-
plained by Sen.   

Indeed (see § B7. in Appendix B, § D2. in Appendix D, and [35]), it is possible to 
use the Doubling of the Degrees of Freedom (DDF) principle characterizing a “deep-
belief NN” [41] in its QFT computational interpretation for implementing Sen’s fair-
ness theory based on the maximin principle in an unsupervised ML algorithm to elim-
inate statistical biases in data. The DDF principle gives, indeed, an immediate compu-
tational effectiveness to the related Sen’s “extended identity axiom” (see Appendix C) 
between the “basal spaces” (i.e., in Sen’s terms “the sets of combinations of function-
ings from which persons can freely choose any one combination”) of different disad-
vantaged/advantaged groups balanced into one only “fair” social state space of oppor-
tunity access to favorable social states. Indeed, also the DDF principle is in physics a 
balancing principle between two spaces of probability distributions representing a sys-
tem and its environment, granting by a suitable “variable aggregation” in the resulting 
merged space, a sort of “fair distribution” of the resources (free energy) among all the 

 
12 We recall here briefly that the “degrees of freedom”, as a result of a suitable variable aggrega-
tion, define in statistics the dimensions of the “probability space”, within which a given proba-
bility distribution can variate (see § D2. In Appendix D for more details).  



19 

components of such a doubled system (see § D2. in Appendix D for a physical expla-
nation of the DDF principle in the formalism of the computational QFT).  

On the other hand, it is easy in the light of the discussion developed in Appendix D 
to guess that a physical counterpart of the maximin principle in economy for a fair 
distribution of resources is in the “fair distribution of energy” among the components 
of a complex dissipative system balanced with its thermal bath in physics. Therefore, 
Sen’s extended identity axiom between different subjective basal spaces in SCT 
(𝑅𝑅𝑖𝑖,𝑅𝑅�𝑗𝑗), has in the DDF principle (𝐴𝐴, �̃�𝐴) of dissipative QFT its natural implementation 
as the basis of an unsupervised quantum ML algorithm inspired to the dissipative QFT 
underlying brain network dynamics (see Appendix D and [35] for more details). Or – 
if we prefer to use the “first-person” jargon of the intentional language for expressing 
Smith’s “extended sympathy” principle (see B1. in Appendix B and the “cognitive tri-
angle” of Figure 4) –, only by mirroring “myself” in “you” so to be each “the double” 
of the other, we can constitute a sympathetic “we” (see [41]). 

 

4 Conclusions: a Relational Ethics for Ethically Accountable AI 
Systems 

To conclude, in our paper we discussed which are the logical and ontological conditions 
that AI autonomous systems must satisfy to be consistently considered as artificial 
moral agents, i.e., as subjects of moral agency, that is, of decisions with an ethical/legal 
relevance in the realm of ME. And not only as simple objects, i.e., as tools designed 
and used by humans – and then as simple extensions of the human intelligence and the 
human moral agency –, to which no autonomous moral agency can be attributed.  

In our analysis, we started therefore from the basic notions of the Theory of Active-
Control Systems, i.e., of Cybernetics as “the theory of communication and control in 
animals and machines” – according to Wiener’s early definition. This reference is fun-
damental for recalling that moral agency can be attributed to humans and machines only 
and only if the “active control” on their actions concerns the ultimate supervising level 
of the goals of actions and of their “heterarchy”, as McCulloch and Pitts first empha-
sized in their pioneering work on ANNs [41]. That is, we can speak of moral agency in 
humans and machines if and only if their active control concerns the “targets” to be 
satisfied by their actions.  

In this perspective, the ever-stricter interaction humans-machines in our Communi-
cation Age, must be interpreted as the interaction between conscious and unconscious 
communication/moral agents, respectively. In this framework, we emphasized that the 
notion of “distributed responsibility” between humans and machines in contemporary 
AI ethics discussions should be enriched by a further distinction derived from NE. This 
distinction is fundamental especially for autonomous AI systems endowed with “deep” 
ML algorithms and then with an unavoidable “opacity” in their decision processes (e.g., 
the “self-driving” cars). Indeed, the slow moral conscious responsibility of a skilled 
(trained) human driver concerns the moral/legal relevance of her/his driving actions. 
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However, this does not mean being conscious of the fast automatic responsiveness of 
the modules of the sensory-motor cortices of her/his brain to the environment con-
straints (path curves, obstacles, etc.), ultimately constituting the driver skill. In other 
words, also in human the decision process by which our brains produce their fast adap-
tative response to the environment constraints are unavoidably opaque like in AI sys-
tems endowed with deep ML algorithms.  

Therefore, instead of speaking about “distributed responsibility” between humans 
and machines, it should be better to speak about their distributed accountability to 
moral/legal constraints. More precisely, a distributed accountability between the slow 
responsibility of conscious moral agents and the fast responsiveness of unconscious 
moral agents to the ethical/legal constraints on their actions from the shared social en-
vironment. 

Hence, the ethical/legal accountability of AI autonomous systems in ME and the 
connected “right to transparency” about their decisions that also AI systems must sat-
isfy with respect to the society, does not concern directly the unavoidable “opacity” 
that the AI systems endowed with ML models share with humans in their decision pro-
cesses. As we discussed in this paper, in the light of the “imitation game” of the Turing 
test from which the same AI research program originates, the ethical transparency in 
AI systems must concern what is before and after the opaque decision process in hu-
mans and machines.  

Hence, the main contribution of the present paper to the ME discussion, is that the 
conditions that the AI autonomous systems must satisfy to fulfill the right to transpar-
ency that the society must pretend from them when their decisions have an ethical/legal 
relevance, are essentially two. The same two conditions that therefore AI systems must 
satisfy for consistently attributing them the ontological status of unconscious artificial 
moral agents in ME.    

1. The presence of explicit ethical/legal constraints on their FOL decisions on the in-
dividual actions to execute. They can be implemented, either in the form of suitable 
deontic algorithms in the inferential-trees characterizing the program of a symbolic 
AI system; or in the form of suitable ethical/legal clauses to be satisfied in the ML 
algorithms of a pre-symbolic AI system. Indeed, both the supervised learning pro-
cess, and the deontic obligatoriness as distinct from the alethic (logic, causal) neces-
sity in modal logic, ultimately consist into the calculation of an optimization function 
with respect to a given target/label (i.e., the minimization of some “cost function”).  

2. The presence of an explicit “deontic reasoner” performing a deontic HOL automatic 
assessment over the effective ethical/legal compliance of the FOL decisions taken 
by the AI system. That is, an automatic explicit metalogical deontic analysis over 
the decisions taken by the AI system endowed with some ethical competence, before 
that these decisions are transformed into actions over the social environment.  

In our discussion, we emphasized that, while there exists already a wide literature 
about different implementations of ethical/legal clauses in the optimization function in 
which any supervised ML algorithm ultimately consists, only recently the AI research 
started to propose suitable solutions to satisfy the second condition we outlined. How-
ever, this second condition is fundamental for granting the ethical/legal accountability 
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of AI autonomous systems for their decisions/actions, before all because also for hu-
mans it is the same. 

Indeed, this sort of moral “self-auditing” is what characterizes our moral reasoning, 
as distinguished because following the moral judgement we made over the “right action 
to execute” before executing it. Effectively, the ethical/legal accountability for our ac-
tions depends mainly on this explicit (conscious) metalogical assessment (moral rea-
soning) about the morality of the judgement we performed on the right action to exe-
cute. It is therefore necessary to satisfy a similar condition also for granting the ethi-
cal/legal accountability for the decisions/actions of AI autonomous systems, so that we 
can consistently attribute to them the ontological notion of artificial moral agents.  

Finally, particular attention we dedicated to the issue of the statistical bias toward 
given disadvantaged groups in the society which are present in the statistical samples 
on which the training of a supervised ML model is performed. This determines un-
wanted but effective “algorithmic injustices (unfairness)” in the decisions of the AI 
systems trained on these biased data. This issue is largely discussed in literature because 
strictly related to the precedent one of the “opacity” of the net training process. Gener-
ally, it can be solved by inserting fairness ethical criteria in the statistical data pre-
processing of the training set of a supervised ML model. Effectively, such a pre-pro-
cessing of the training set by an unsupervised ML algorithm for a suitable variable 
aggregation is anyway necessary for granting to the net a fast and reliable convergence 
to the desired results (see § B7. in appendix B and [78]). In our case, it must be per-
formed through a suitable unsupervised ML algorithm satisfying a “fair” variable ag-
gregation criterion, in the context of a relational approach to ME.  

Therefore, in this context of a relational ethics approach to deontic logic, we de-
voted particular attention to the possibility of implementing Sen’s theory of distributive 
justice as fairness. This is based on the ethical maximin principle used as a variable 
aggregation principle in the statistical data management, implemented as a particular 
architecture of QFT quantum computing for unsupervised ML. Indeed, as explained at 
length in the Appendix D, the DDF principle of variable aggregation that is typical of 
the “dissipative” QFT modeling of quantum computing can be directly used as an un-
supervised ML algorithm for defining a “socially fair” probability space, in which the 
statistical distribution function outputted by the supervised ML algorithm of the AI 
system can be defined. This modeling, indeed, from a formal standpoint, is particularly 
suitable for a relational ethics approach to ML. Indeed, on the one hand, it is directly 
inspired to brain unsupervised learning modeled using the dissipative QFT as funda-
mental physics of the brain dynamics. On the other hand, it is compliant with an alge-
braic modeling of deontic logic using Kripke’s relational semantics of modal logics.                           
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Appendix A: The notion of “active control” in biological and 
artificial systems and its relevance for ME 

A1. The graded notion of active control in biological and artificial systems 

In his Cybernetics book [15], N. Wiener introduces the famous ontological distinction 
between “mechanical systems” that are capable only of a passive control on their own 
behavior (i.e., satisfying the “Third Action-Reaction Principle” of Newtonian Mechan-
ics, and then ultimately a stability condition at equilibrium in classical and statistical 
mechanics) and the “cybernetical systems” that are capable of an active-control by feed-
back on their own behavior13. Where the notion of “feedback” consists in the fact that 
only a part of the output y (and then a “physical signal”) is backpropagated toward a 
controller C able to modulate the input x, for (recursively) minimizing some measura-
ble distance ∆ between the output value 𝑦𝑦𝑒𝑒 and a target value 𝑦𝑦𝑡𝑡  (see Figure 2).    

 
Figure 2. Elementary scheme of an active-control system.  

As discussed elsewhere [39], this basic triadic structure (input-controller-output) of 
any active-control system – where the controller plays the semiotic role of Peirce’s in-
terpretant – is able to transform a “physical signal” into a “communication signal” or a 
sign (i.e., “something being for something else”). That is, a physical signal carrying on 
some “information” (i.e., where the “energy” measure is distinguished from the “infor-
mation” measure). This makes possible to justify – in C. Shannon’s statistical theory of 
communication – the distinction and the strict relationship (because both related to 
some minimization of the free-energy function, even though not necessarily at equilib-
rium) between the physical entropy S and the information entropy H, both sharing the 
same statistical definition. In this way, Wiener was right in his visionary approach 
aimed at giving by the notion of active control and its sophisticated mathematical ap-
paratus, for the first time in the history of modern science, a strong common mathemat-
ical basis, both to the biological sciences and to the artificial sciences. 

 
13 Following a famous exemplification of the physicist Victor F. Weisskopf [119] in the atomic 
and molecular physics, the physics of the atom nuclei controls the structure of the electron dis-
tribution according to different levels of energy (the electron “orbitals” according to the semi-
classic Bohr’s “planetary” representation of the atoms) around the atomic nuclei, but there is no 
feedback from electrons over the nucleons (protons and neutrons) in the atomic nuclei. Thus, 
following Weisskopf suggestion, atoms and molecules, despite their complex structures, are not 
active control systems, differently from also the more elementary biological system like a cell 
or unicellular organisms.    
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This common mathematical basis of the notion of active control in biological and 
artificial systems – following Müller’s suggestion – can help us also in clarifying the 
notion of “graded and relative” autonomy of AI systems/robot with respect to the hu-
man control. Indeed, always referring to the basic notions of cybernetics, it is well-
known that the active-control can be exerted both in artificial and biological systems 
(humans included) at three main levels: 

 
Figure 3. Schematic representation of the three main levels on which an active-control can be 
exerted in biological and artificial systems. 

1. The active-control over the execution/not-execution of some operation by the effec-
tor sub-system E (see Figure 3) in the more elementary active-control systems 
(think, for example, at a simple thermostatic switch). 

2. The active-control over the organization level O  (see Figure 3) of the complex re-
sponse of a system endowed with several types of sensors for taking into account 
different parameters. Think, for example, at the “smart thermostats” with several 
sensors of the modern refrigerators. This is typical in nature of the biological systems 
as self-organizing systems, because endowed with non-linear self-regulation pro-
cesses at different degrees of complexity. This makes them able of adapting them-
selves to a varying environment, so to be stable in far-from-equilibrium conditions 
(think, for instance, at the biological homeostasis [40]). 

3. The active-control over an heterarchy of the goals (targets) to be fulfilled, which 
supervise the behavior of any active-control system. It is evident that we speak about 
autonomous systems both in the biological and in the artificial systems, when the 
active control concerns this ultimate supervising level S in Figure 3). E.g., in the 
self-controlled behavior of the human free-agency and/or in AI autonomous systems. 
Think, for instance, at the typical ethical conflict in self-driving cars between the 
constraints of the safety of the car passengers, and of the safety of a pedestrian cross-
ing suddenly with a red-light a narrow street with high walls on both sides.    
This active control at its ultimate level is generally implemented in two fundamental 

ways in AI systems, even though in many practical applications there exists an effective 
hybridization of the two approaches (see Appendix B): 
1. In symbolic AI systems – the so-called “expert systems” because simulating algorith-

mically the expertise of humans in some specific field of data management (see §2.2) 
– by inserting the ethical constraints in the form of deontic logic algorithms in the 
explicit inferential tree, on which the system decisions of this class of AI systems is 
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based without any “opacity” (see [19] for an updated bibliography about this type of 
approach). 

2. In pre-symbolic AI systems, that is, the AI systems endowed with ML models due to 
the extremely large amount of data to be managed (often with millions of items and 
billions of parameters (“big data”)) that excludes in principle any human expertise. 
In this case, the ethical constraints are inserted as ethical conditions (deontic logic 
“AND” clauses) to be satisfied in the optimization process (minimization of the er-
ror), to which any multilayered supervised ML algorithm ultimately reduces itself.  
This implies the ineludible “opacity” in the AI system decision process (see [20] for 
an introduction and [41] for deeper considerations on these topics). 
To conclude, whichever system, either natural or artificial, able to implement an 

active control over the ultimate level of the goals of its behavior is effectively able to 
perform deontic modal logic calculations, which connotes it formally as a natural/ar-
tificial moral agent.    

A2. The deontic modal logic as a formal justification of the “Hume Law” 

In the axiomatic logic framework, modal logic – that is, the logic of the different senses 
of necessity/possibility in philosophical logic – ultimately consists in adding some 
modal axioms to the usual axioms of the propositional calculus. These axioms rule the 
consistent usage of the necessity  / possibility ◊ operators in the modal propositional 
calculus. This means that the modal logic is a two-valued  (1/0) propositional logic in 
which the true/false evaluation function of complex propositions cannot be reduced to 
the usage of the truth-tables of logical connectives (“NOT”, “AND”, “OR”, 
“IF…THEN”) among elementary (subject-predicate) propositions like in the usual 
propositional calculus [42]. Indeed, the truth evaluation function in modal semantics 
depends on different truth criteria, according to the main different (alethic, epistemic, 
deontic) interpretations of the modal operators in different linguistic contexts/usages 
[43].  

In this axiomatic framework, it is therefore possible to satisfy formally in modal 
logic terms the so-called “Hume Law”. That is, the distinction between the “necessity” 
in the descriptive statements of the physical/metaphysical discourse, and the “obliga-
tion” in the normative statements of the morale/legal discourse14. That is, in terms of 
the modal logic distinction between alethic (physical, causal) necessity/possibility 
(/◊) operators, and deontic (moral, legal) obligation/permission (O/P) operators.  

Particularly, the so-called value-based deontic logic interprets the reflexive modal 
relation of alethic logic based on the modal axiom 𝐓𝐓(𝑝𝑝) ≔ 𝑝𝑝 → 𝑝𝑝, that is, “if p is true 
in all possible worlds, then it is true in the actual one”, in terms of satisfaction of an 

 
14 Historically, indeed, the Hume Law distinction resulted to be so impressive in the Modern 
philosophical debate, because of the abandon of the modal logic distinctions – well known and 
largely discussed in the Scholastic philosophy – in modern logic and philosophy from the XV 
cent. on. Practically, till to the beginning of the XX cent., when C. I. Lewis proposed his axio-
matic formalization of the modal logic [123], reinserting it in the modern philosophical and 
scientific debate.     
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optimality axiological condition. That is, p is “maximally good” for a given moral agent 
x in situation: Op(x,p). Then: 𝐎𝐎 ≔ (𝐎𝐎𝐎𝐎 (𝑥𝑥, 𝑝𝑝) ∧ 𝑥𝑥𝑎𝑎 ∧ 𝑥𝑥𝑛𝑛𝑖𝑖) → 𝑝𝑝.  

For instance, in alethic contexts it is sufficient that, if a physical law p holds in all 
physical contexts, then it holds also in the actual one. E.g., in the case of Galilean Law, 
“if it is necessary that all heavy bodies fall, then they fall also in the actual world”. On 
the contrary, this is not true in deontic context, for instance in the case of the moral/legal 
norm of tax payment. That is, it is not true that “if it is obligatory that all people pay 
taxes, then all people pay taxes in the real world”.  

In order that the deontic obligatoriness of a moral/legal norm becomes effective in 
the real social  world, it is necessary that this norm be related with a value to be pursued 
(something that is good or “optimal”) for a given moral agent x. x  must  satisfy the 
double condition (clauses) of accepting it, xa, and the freedom situation of having no 
impediment in effectively pursuing this goal, xni, by a suitable “good” action. Of course, 
in the case of pluralistic societies like ours, instead of a HOL condition of ethical opti-
mality Op (= maximally good for all social-world states), it is sufficient a FOL condi-
tion of ethical maximality Max for given partitions (or disjoint unions or coproducts) 
of the social-world states. This brings us to a relation ethics based on Kripke’s modal 
relational semantics (see also § D1. in Appendix D).       

  
  

Appendix B: From the Symbolic to the Pre-Symbolic 
Approach in the AI Research Program 

B1. The Origins of AI Research Program and of Cognitive Sciences 

For a further clarification of what we intend when we affirmed that our solution of the 
opacity issue in AI autonomous system fully satisfies the “imitation game” of the Tu-
ring test, on which the AI research program is based, it is convenient to shortly review 
the same origins of AI program. The famous “Dartmouth University Conference” of 
1956 started officially the AI research program, based on the Turing test (1950) and its 
“imitation game” [16]. It is impressive how the statement by which John Mc Carthy, 
Marvin Minsky, Nathanial Rochester, and Claude Shannon proposed to the Rockfeller 
Foundation to support this Summer Workshop at the Dartmouth College effectively 
anticipates the research program of AI developed during the following decades.  

We propose that a 2-month, 10-man study of artificial intelligence be carried out during 
the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to 
proceed on the basis of the conjecture that every aspect of learning or any other feature of 
intelligence can in principle be so precisely described that a machine can be made to sim-
ulate it. An attempt will be made to find how to make machines use language, form ab-
stractions and concepts, solve kinds of problems now reserved for humans, and improve 
themselves. We think that a significant advance can be made in one or more of these prob-
lems if a carefully selected group of scientists work on it together for a summer [17]. 
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The proposal goes on to discuss digital computers, natural language processing, neu-
ral networks, theory of computation, abstraction and creativity, all research fields of AI 
based on the so-called “AI-dogma”, as Douglas Hofstadter named it [44]. Namely, if a 
Universal Turing Machine (UTM) – effectively a “general purpose” programmable 
computer – can imitate successfully a human intelligent task, there must exist some 
essential “isomorphism” between the program running in the computer, and the pro-
gram running in the brain. From this principle, the re-interpretation of the classical 
“mind-body” relationship in terms of the “software-hardware” relationship, and then 
the metaphor of mind as “software” of the brain “wetware”, historically derives [45]. 
From this, in the 60’s of the last century, the cognitive science research program as the 
“new” science of mind arises [46]. This is characterized by a non-reductionist approach, 
with respect to the physicalist approach of the so-called “central-state theory” to the 
mind science, proposed by Herbert Feigl at the end of 50’s [47].  

Feigl, indeed, was one of the youngest members of the Wiener Kreis, cradle of the 
“neo-positivistic movement” in Europe at the beginning of XX cent. After that he 
moved to US, founded at the University of Minneapolis the “Minnesota Center for Phi-
losophy of Science”. He also became the editor-in-chief of the prestigious collection of 
the “Minnesota Studies of Philosophy of Science” that outlived the death of his founder 
(1988) till today. In this collection, the results of the research of the Center, and of the 
movement of the so-called “logical empiricism” originated from the Center activities, 
were published for several decades15.  

Now, in the II Volume of the collection, dedicated to the mind-body problem, there 
were two fundamental contributions. The first one was the already quoted Feigl’s arti-
cle. The other one was by Wilfrid Sellars and was dedicated to the logical analysis of 
the relationship between “the intentional and the mental” [48]. In it he rightly empha-
sized that the “first-person (singular/plural) language” (i.e., the so-called I/we talk) ex-
pressing the “intentional (with “t”) states of mind” of individual/collective  cognitive 
subjects, supposes an “intensional” (with “s”) modal logic”. This makes logically in-
consistent any materialistic attempt of identifying by a logical equivalence, an inten-
tional state of mind, with an observed state of brain. The observational language of 
science, supposes, indeed, the standard “extensional logic”16 of the mathematical pure 

 
15 It is worth to be recalled, that Karl R. Popper in his Intellectual Autobiography, defined himself 
as “the killer of the Neo-Positivism”, identifying the date of such a murder with the (temporary) 
stopping of the publication of the Minnesota Studies collection. Unfortunately for him, the col-
lection (not the Neo-Positivism) outlived not only Feigl’s death, but also Popper’s death (1994). 

16 I.e., where the extensionality axiom holds between classes A, B holds: ((𝐀𝐀 ↔ 𝐁𝐁) ⇒ (𝐀𝐀 = 𝐁𝐁)). 
That is, where the predicative meaning reduces itself to the predicate extension and then to the 
set-theoretic logical membership, so that two predicates (e.g., “being water” and “being H2O”) 
with the same extension (defined on two equivalent classes of objects) must be considered as 
identical, and then can be substituted each other, without changing the meaning of the predica-
tive sentence [120]. In intensional logics, the extensionality axiom of mathematical logic does 
not hold, because what the individual/collective intentional subjects intend with a given predic-
ative sentence is fundamental [121]. Formally, the different intensional logics (mainly, the ontic, 
epistemic and deontic logics) are different semantic interpretations of the common underlying 
syntax of the axiomatic modal calculus. This is obtained from the classic propositional calculus, 
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and applied sciences. In a word, the first-person “I/we-talk” of the intentionality cannot 
be reduced systematically to the third-person “O-talk” of the observational language of 
the neurophysiological sciences, in their searching for the neural correlates of subjec-
tive mind states. 

Sellars’ distinction between the “I/We-talk” of the mentalistic language expressing 
the intentional conscious states, and the “O-talk” of the observational language of the 
neurophysiological inquiry influenced systematically the further philosophical reflec-
tions about the relationships between the intentional mind and the brain. From another 
philosophical standpoint, Willard V.O. Quine synthesized the issue in the following 
statement. We passed from Descartes’ “irreducible duality of substances” about the 
mind-body to the “irreducible duality of languages and their logics”. Even though both 
languages are sharing the same extra-linguistic referent: the physical states/operations 
of the brain [49, pp. 132-134].   

A similar ontological position was shared also by Feigl in [50], where he proposed 
his physicalist interpretation of the “central-state theory” of the mind-body relationship 
based on Sellars’ irreducibility of the intensional to the extensional logics. Feigl sug-
gested that an appropriate mind’s science must be based on a triangulation among: 

1. The I-talk of the intentional mentalistic language. 
2. The O1-talk of the observational language of neurosciences that he denoted as 

“physical1”. 
3. The O2-talk of the observational language of behavioral sciences that he denoted 

as “physical2”. 
Now, what characterizes Feigl’s central-state theory is the relationship between the 

two observational languages denoted as “physical1” and “physical2”. Feigl assimilated 
them to the relationship in thermodynamics between, respectively, the “microstates” of 
the particle motions, and the correspondent “macroscopic” thermodynamic statistical 
variables (temperature, pressure, and volume). These have their proper explanation at 
level of the microstate dynamics, which in our case is the microstate of the brain dy-
namics. However, what links Feigl’s theory to the early AI-research program and to the 
development of cognitive sciences and neurosciences is the observation that, both the 
physical entropy S in Boltzmann’s statistical thermodynamics for closed systems, and 
the information entropy H of Shannon’s mathematical communication theory applied 
to TM computations, share ultimately the linear character of the dynamics involved 
[50].  

 
by adding some modal axioms, ruling the usage of the “necessity” , “possibility” à modal 
operators [42, 43]. In other words, all intensional logics – constituting the core of the so-called 
philosophical logic (i.e., the logics of the ontological, epistemological, ethical disciplines where 
the reference to the human conscious subject(s) is essential), as distinguished from the mathe-
matical logic of the scientific disciplines – are not “truth-functional” based on the usage of the 
“truth tables” of the logical connectives like in the mathematical propositional logic. Each in-
tensional semantics is indeed characterized by a different truth criterion, i.e., by a different in-
terpretation of the modal operators, through which different intensional logics are distinguished 
(see §A2.) 



28 

This supposition identifying energy and information17, evidently, no longer applies 
when, starting from the 70’s of the last century, the strong non-linear character of the 
thermodynamic processes experimentally emerged. They indeed characterize all the 
“open” or dissipative systems, such as all the biological systems and mainly the natural 
brains are. On this basis, Walter Freeman [51], John Searle [52, 53], Hubert Dreyfus 
[54], all working at University of California in Berkeley, strongly criticized the early 
AI approach in cognitive neuroscience, necessarily based on the UTM linear computa-
tions. In a naïve but substantially correct way, Searle by his famous “Chinese room” 
metaphor, as opposed to the “room” of the Turing test [52], stated that a UTM is not a 
model of the human brain because brains calculation are based on the intensional logic 
– the logic of the psychological intentionality, as Sellars taught us – and not of the 
extensional mathematical logic of a TM (see note 16). 

Therefore, following Howard Gardner’s historical reconstruction of the early devel-
opment of cognitive science [46], what characterizes the “cognitive revolution” in the 
mind science is the complete substitution to Feigl’s “physical2” observational language, 
with the computational language of the information processing in the brain dynamics. 
In other terms, the updated triangulation of the modern cognitive neuroscience, as well 
as of the AI systems in Theoretical Computer Science (TCS), is among [55]: 

1.  The I/We-talk of the subjective intentional state reports in “singular/plural first per-
son”. They are formalized in the “intensional logics” like as many (“ontic”, “epis-
temic”, “deontic”) interpretations of the modal calculus. 

2. The O-talk1 observational language of neuroscience, formalized in the extensional 
logic of the neuroscience mathematical models.  

3. The O-talk2 of the observational language of the information processing in the brain. 
They can be developed, either in terms of the mathematical calculus of the exten-
sional logic, or in terms of the modal calculus of the intensional logics. 

 
Figure 4. Scheme of the triangulation of the cognitive neurosciences. 

Of course, what is interesting for our aims (see below Appendix D) is the possibility 
of implementing in AI systems the deontic algorithms of a modal BAO that has its 

 
17 It is remarkable that A. Einstein stressed that in fully deterministic systems the energy-infor-
mation distinction has no sense at all. 
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proper foundation in the topological approach to TCS, based on the fundamental Mar-
shal Stone’s “Representation Theorem of Boolean Algebras” [56]. And then in the con-
sequent development by Alfred Tarski and Bjarni Jónsson of a “Boolean Algebra with 
Operators” (BAO) that allowed the extension of the operator algebras formalism from 
physics to logic (see § D2. in Appendix D and  [57, 58, 59, 60, 55] for further details). 
Particularly, in the framework of the Category Theory (CT) metalanguage, the functo-
rial dual equivalence between the category of coalgebras on Stone Spaces SCoalg, and 
the category of modal BAO MBAO for the Vietoris functor 𝒱𝒱, i.e., 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒(𝓥𝓥) ≃
𝐌𝐌𝐁𝐁𝐀𝐀𝐎𝐎(𝓥𝓥)∗ has a particular relevance, because it allows an algebraic interpretation of 
Saul Kripke’s modal relational semantics [61, 62], with a direct applicability in TCS 
[63, 34]. Moreover, there exists the possibility of an implementation of this functorial 
duality in a categorical modeling of quantum information processing in dissipative QFT 
systems, both in cognitive neurosciences [64, 65] and in TCS [66, 55]. This possibility 
is based on the identity of the topological properties between the Stone spaces in logic 
and the Banach spaces of the C*-algebras in quantum physics [67]. Particularly, this 
means that it is possible a quantum implementation of the so-called “deep-belief neural 
networks”, as a particular model of unsupervised ML developed by Walter Freeman 
and his colleagues in AI systems [68] (see § B7. In Appendix B). In our case, it can be 
directly applied to implement in AI autonomous systems the deontic algorithms of a 
relational ethics, rigorously formalized in the framework of Kripke’s modal relational 
logic, as we discuss in Appendix D.   

B2. The Symbolic AI and the Functionalist Approach in Cognitive Sciences 

For continuing our reconstruction of the AI research program, the interpretation of the 
information processing in the brain in terms of the UTM calculations, is what charac-
terizes the early functionalist approach to cognitive sciences. This has its manifesto in 
the already quoted paper by H. Putnam – who successively changed completely his 
mind –  its manifesto  [45]. On the other hand, this approach has its development in the 
so-called symbolic approach based on UTM to AI [69, 70, 71]. Indeed, in this approach 
the decisions of an AI system are based on the explicit inferential decision tree imple-
mented by the programmer, without any ML algorithm, and then without any “opacity” 
in the decision process of the system. 

Furthermore, the pioneering work of Warren S. McCulloch and Walter H. Pitts dur-
ing the 40’s of the last century [72] demonstrated that a (net of) neuron(s), with a linear 
activation function18 can in principle implement the four basic Boolean logic operations 
(“and”, “or”, “if.. then”, “if and only if… then”), and then it is equivalent to a TM. In 
this way they extended the symbolic approach of AI, and then the functionalist ap-
proach to cognitive sciences, also to artificial neural networks (ANN).  

 
18 The linear activation function (state transition map) for each neuron is given, indeed, by the 
algebraic summation of positive and negative input values, simulating the array of excitatory/in-
hibitory synapses of natural neurons. When the overall value overcomes a fixed threshold, the 
neuron is activated so to display a discrete 0/1 behavior. 
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Moreover, at the end of 40’s, Donald Olding Hebb, based on neurophysiological 
evidence, defined the so-called associative Hebbian learning rule for the self-assem-
bling of neuron circuits in the brains [73]. According to it, the recurrent simultaneous 
activation of neurons produces an increasing in the synaptic statistical strength (weight) 
among these neurons, following a linear rule. A rule that can be, therefore, synthesized 
into the slogan “neurons increase the probability of wiring together if they fire together” 
[74]. In 1954, B. G. Farley and Wesley A. Clark published a computational model of 
self-organizing ANN based on the Hebbian rule, in which arrays of artificial neurons 
(effectively, the cells of a transitive probability matrix (TPM)19 simulating on a digital 
computer the net dynamics) are enriched by feedforward/feedback circuits, determining 
the statistical weight of connection wij between two neurons i,j. These works, therefore, 
inaugurated, inside the realm of cognitive sciences, the new discipline of cognitive neu-
rosciences [75]. In this case, the computing system of reference is a probabilistic TM, 
always with the supposition of the linear character of the statistical dynamics involved.  

B3. The Pre-symbolic Approach to ANNs and the Linear Machine Learning 

A further significant approach to early ANN architectures is the so-called linear per-
ceptron architecture of Frank Rosenblatt [76], who during the 60’s hoped to implement 
a parallel computing architecture in a net of linear neurons, for simulating the parallel-
ism of the brain neural networking. The parallelism of the architecture depends on the 
fact that each neuron is calculating independently a different function defined on some 
disjoint subsets of the input set (i.e., mathematically a filter defined on the power set of 
the input set). This has evident advantages as to the standard serial computers in terms 
of computational velocity20. But overall, without the necessity of a supervisor (pro-
grammer) distributing the different computational tasks among the neurons (see Figure 
5).  

 

 
Figure 5. Schematic representation of the linear perceptron parallel architecture, where a given 
pattern X is “designed” over the input space (or “retina”) of the net. Each input neuron 𝛼𝛼𝑖𝑖 calcu-
lates independently a different function 𝛷𝛷𝑖𝑖, whose supports are defined on a “filter" constituted 

 
19 We recall that a TPM is matrix of conditional probabilities ruling the transition of the activa-
tion state (0/1) of each neuron (a cell of the matrix) in a way depending, according to a given 
statistical rule, on the activation state of the other connected neurons (the other cells of the ma-
trix). 

20 Indeed, if an algorithm is composed by n computational steps, while in a serial computer it is 
performed by one only processor in n cycles of calculus, in a parallel architecture it can be 
performed by n processors in one only calculus cycle. 
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by disjoint subsets Ai  of the input space. The output neuron 𝛹𝛹, therefore, calculates the simple 
linear summation of the results of the input neurons calculations. 

In this way, the perceptron introduced the notion of (unsupervised) machine learning 
(ML) in the ANN research program. Indeed, the updating of the statistical weights (i.e., 
the probabilities of neuron activation) associated to the neuron connections, during the 
training (learning) phase of the net over a representative sample of the dataset, is based 
on a linear Hebbian-like rule. 

However, in 1969 Marvin Minsky and Seymour Papert published at MIT a book 
with a strong criticism of Rosenblatt’s linear perceptron [77]. Indeed, they demon-
strated mathematically, and in a very elegant and convincing way, that for this type of 
parallel computational architecture conceived for the pattern recognition of one only 
class of objects, it is in principle impossible to calculate the logical “XOR” (or “exclu-
sive or” (0110) corresponding to the negation of equivalence (1001) that is essential for 
training an ANN for executing classification tasks among objects belonging to different 
classes (see Figure 6), which, on the contrary, it is simple to be calculated by a standard 
serial computer.    

 
Figure 6. Intuitive representation (from [78]) of the two errors of under-fitting (left) and over-
fitting (right) at the end of the training phase of the ML algorithm of an ANN, for the discrimi-
nation between two classes (green and red) of objects. It is evident that the best-fitting (center) 
implementing statistically the logical XOR is given by a non-linear function, that a linear function 
(left) cannot implement in principle. On the contrary, the over-fitting is given by a function too 
depending on the training set and then with null generalization capacity, since it fits also with 
elements randomly distributed over the two classes in the training set21. 

Moreover, a second criticism to the Rosenblatt perceptron was, if possible, even 
more radical. Indeed, the union of disjoint sets of the perceptron is a proper filter only 
and only if it is granted that at least one point of the “pattern” in the input space (corre-
sponding to a given correlation order among the elements (points) of the input space) 
falls within one of the disjoint sets of the filter. Indeed, a proper filter is defined in set 

 
21 Finally, we recall that in any ML algorithm, to test the results of the training phase, the gener-
alization capacity of the learned classification is tested on another representative sample of the 
dataset, distinct from the sampled set used for the training phase, in the so-called “testing phase” 
of the ML algorithm. Only after a successful test the ML ends, and the system is applied to 
perform its classification task on the whole dataset.    
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theory as a partially ordered set defined on the power set of a given set, with the exclu-
sion of the empty set. Now, the only way for mathematically granting this “fitting” of a 
filter with any pattern designed in the input space is the existence of a “supervisor” 
seeing at the whole input space, readapting continuously the filter for matching differ-
ent patterns designed into the input space.  But in such a way the perceptron would lose 
its fundamental property with respect to a standard serial computer. That is, its preten-
sion of being an effective parallel architecture of calculus. Now, Minsky’s and Papert’s 
criticism was so destructive because mathematically incontestable against the early lin-
ear approach to the ANN parallel computing that this book effectively blocked any 
attempt in the ANN direction till the 80’s of the last century. 

B4. The Pre-symbolic Approach to ANNs and the “Deep Learning” in AI 
Machine Learning  

On the other hand, from the neurophysiological point of view, a lot of experimental 
evidence was produced during the 70’s of the last century, emphasizing the non-linear 
and even the chaotic character – in the sense of the dynamic notion of deterministic 
chaos – of the natural NN information processing in the brain (see [79] for a synthesis). 
This determined the crisis of the functionalist approach to cognitive sciences from the 
standpoint of neurosciences, with the consequent refusal of the early “AI dogma” for 
which a linear (probabilistic or not) TM might be always a faithful model of the neural 
computational architectures in natural brains.  

This determined a paradigm-shift in ANNs, denoted as the connectionist approach 
to ANNs, and then of the so-called pre-symbolic approach to ML in AI-systems, versus 
the early “symbolic” one like in Minsky’s celebrated AI frame theory for expert sys-
tems [80], the ancestor of the actual object-programming techniques. The connectionist 
approach, indeed, is aimed at the statistical management of huge bases of data (“big-
data”) with higher-order inner correlations instead of the first order averages that can 
be calculated by a TPM endowed with a linear activation function [81]. 

Particularly, the so-called backpropagation (BP) machine learning algorithm [82] 
seemed to directly solve the core of Minsky’s and Papert’s criticism to Rosenblatt’s 
linear perceptron, before all the ability of calculating the logical “XOR” function that 
is indispensable for classification tasks [29] (see Figure 6). What characterizes the BP 
architecture as to the linear perceptron is indeed:  
1. The presence, beside the only input and output layers of the original perceptron, of 

several inner layers of neurons, so to justify the notion of “deep-learning” in this 
type of ANN architecture. 

2. The presence of a non-linear function (threshold) multiplying the activation function 
(i.e., the weighted input summation) of the deep neurons of a BP for a sigmoid func-
tion 𝜎𝜎(𝑎𝑎) = 1

1+𝑒𝑒𝑎𝑎
 ,  and/or by its close relative, the hyperbolic tangent function, tanh, 

instead of the stepwise 1/0 activation function of Rosenblatt’s perceptron. This latter 
is effectively the Heaviside function, whose value is zero for negative arguments and 
one for positive arguments, and then making linear the neuron activation function 
(see Figure 7).  
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Figure 7. Heaviside step function (left), acting effectively as a discrete 0/1 threshold, compared 
with sigmoid (center) and hyperbolic tangent (right) functions. It is evident that tanh is a 0-cen-
tered function with values between -1 and 1, then satisfying an anti-symmetric relation that, is 
fundamental for justifying the set-ordering in mathematical logic. 

In a word by using the sigmoid function or the hyperbolic tangent function in the 
activation function of the hidden neuron layers, the neuron output can be any real nu-
merical value between 0 and 1, so to allow a non-linear characterization of the neuron 
statistical outputs, instead of the discrete 0/1 output of the linear stepwise activation 
function of the McCulloch and Rosenblatt neurons. This makes in principle the net able 
to perform more complex statistical computations, addressing to higher-order correla-
tions (complex combinations of variables) in the input data set. 

B5. The Gradient Descent Algorithm in Supervised Machine Learning 

Finally, the statistical output so obtained allows BP to use the stochastic gradient de-
scent optimization algorithm, for the weight update of the hidden neurons during the 
learning phase of such an architecture, and from which its “back-propagation” name 
properly derives. Indeed, the supervised learning process of this multilayer non-linear 
ANN structure – developing an early suggestion by Paul Werbos [83] – consists into a 
stochastic optimization process of error minimization.   

That is, the supervised “deep-learning” of the inner neurons of BP is modeled as the 
stochastic (random) searching for the global minimum of the “error-function potential” 
of the net weight dynamics. Where the error is substantially a Euclidean distance (ef-
fectively a measure of the “mean square error”) between the “desired” probability dis-
tribution, and the “actual” probability distribution outputted by the net [82]. As sche-
matically synthesized in the Figure 8, at the end of each training cycle, the BP algo-
rithm, estimates the error and “back-propagates” it for a re-adjustment of the hidden 
neuron weights to reduce the global error at the next step. And so on, recursively till 
the global minimum of the error function is reached.  

Of course, the blind redefinition of the hidden weights among the different “neu-
rons” each representing a different “variable” of the complex problem at issue, consti-
tutes a big problem for the usage of AI systems as support for decisions implying social, 
moral and legal consequences. In fact, it makes non-transparent the data usage, as well 
as the motivations for which the system evaluates the legal/moral relevance of (i.e., “it 
weighs”) each different components in relationship with the others as to the final deci-
sion. This blindness and opacity of the variable weighing are two of the main factors 
that ignited the actual fierce debate on AI ethics, as we emphasized in this paper. 
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Figure 8. Schematic representation of the BP “deep-learning” algorithm, according to which the 
net “back-propagates” the error from the desired output onto the weights of the hidden layer(s) 
in a random way, so to obtain recursively the global minimization of the error. 

Anyway, BP is not able in principle to answer properly the second main criticism of 
Minsky and Papert to perceptrons. The neurons of the inner layers, indeed, are con-
nected “all to all” among themselves and overall, with the input neurons. In this sense, 
a connectionist neural architecture based on the BP algorithm is not properly an imple-
mentation of a parallel computational architecture22.  

Indeed, it is mathematically true that the “smoothing” of the Heaviside by a sigmoid 
function, working in the BP algorithm as a fixed threshold on the weight activation 
function, is able in principle to calculate higher order correlations23. However, which 
they are – i.e., which are the disjoint arguments of the XOR – depends critically on the 
“slope” of the sigmoid that must be fixed in advance by the programmer. In fact, the 
learning process of BP is not on the neuron thresholds but on the weights, and, indeed, 
if we make varying also the thresholds (i.e., the connection topology among neurons) 
and not only the connection weights as it happens in natural neurons, the system dy-
namics becomes immediately chaotic [84]. On the contrary, as we demonstrated else-
where [66, 85], the dynamic definition of the sigmoid by the doubling of the degrees of 
freedom (DDF) between the system and its environment is precisely one of the main 
characters of the dissipative QFT modelling of unsupervised learning both in natural 
and artificial NNs (see Appendix D). Not casually, indeed, it is demonstrated that what 
we observe macroscopically as a chaotic trajectory in the dynamics state (phase) space, 
is nothing but the trajectory among different phases of the microscopic quantum field 
dynamics that can be controlled by the DDF in dissipative QFT [86].    

Then if the total connectivity and the related issue of the “sloping” of the sigmoid 
makes not properly “parallel” the BP machine learning, on the other hand, the total 
connectivity makes extremely computationally heavy the BP calculations. Indeed, the 
possible combinations grow factorially as n! with the number n of the fully connected 

 
22 For this reason, Minsky refused to make any substantial correction to the Second Edition of 
his Perceptron book published in 1989 [117], vindicating – rightly from his theoretical point of 
view – that BP gave no substantial answer to his main criticism against the effective parallel 
computation capabilities of the ANN architectures.  

23 Indeed, in mathematical analysis, the Taylor series expansion of a tanh (and then of a sigmoid) 
function contains in principle all the correlation orders among the elements of a given set, and 
then in principle it can include whichever class defined on a given set of elements. 
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hidden neurons involved. This practical limitation determined therefore a second “la-
tency” period of the ANN approach to ML in AI systems during the 90’s of the last 
century till the beginning of ours. At that time, the large availability of non-expensive 
but computationally powerful (in the matric calculus) graphic processor units (GPUs) 
to be arranged in parallel architectures with many nodes is one of the two factors deter-
mining the actual explosion of the AI systems endowed with “deep learning” algo-
rithms.  

B6. The Deep Convolutional Neural Networks as the State of Art in 
Machine Learning 

The second more relevant factor on which the actual explosion of AI systems endowed 
with “deep” ML algorithms was the publication of the paper by Geoffry E. Hinton and 
his Colleagues in 2012 on their model of deep convolutional neural network  [87]. This 
model has successfully worked on the Imagenet database [88], containing millions of 
images (today, more than 14 millions). The model consisted of a convolutional neural 
network of nine layers of neurons, with 60 million parameters and 650,000 nodes that 
has been trained on about a million distinct examples of images taken from about a 
thousand classes. 

Indeed, the convolutional neural networks (CNNs) are now the paradigm of refer-
ence in deep learning-based ML models. Or, in other words, CNNs are the main reason 
for the current success of deep learning in AI. The distinctive features of CNNs can be 
found on any good review paper of this type of connectionist network (see for instance 
[78], as one of the more recent and complete), of which there exist several models for 
different applications. 

What universally characterizes CNNs compared to other connectionist networks are 
two fundamental innovations, making effectively more similar this ANN architecture 
to the networking of brain cortices:  

1. The concept of neuronal receptive field. That is, each internal neuron of the convo-
lution layers of the network sees only a subset of the respective input set from the 
previous layers just as in the original perceptron (see Figure 4). Effectively the com-
plete connectivity is only in the final classification layers of the network. In this way, 
CNNs can avoid systematically the problem of the total connectivity among the inner 
layers of the BP architecture.  

2. The presence of several inner layers of neurons of different types (building blocks), 
according to the following general scheme: 
• Convolution layers for the progressive extraction of input features by kernel 

operations (filtering) that correspond to different abstraction levels. The output 
of each convolution operation is multiplied by some nonlinear function (gener-
ally the Rectified Linear Unit (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≔ 𝑓𝑓(𝑥𝑥)𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅 = max (0, 𝑥𝑥)), because of the 
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linearity of the convolution operation itself24. Effectively in the CNNs a discrete 
version of the convolution operation between two functions 𝑓𝑓[𝑛𝑛] and 𝑔𝑔[𝑛𝑛] is 
implemented. Practically, each convolution layer contains a set of convolutional 
kernels (filters), "which is convoluted with the input image (with N-dimensional 
metrics) to generate a map of the emerging common characteristics of the input 
as output" ( [78, p. 523]). 

• Pooling layers, each after a convolution layer for down-sampling the statistical 
output of each different convolution layer, to reduce the size of the output with-
out losing significant information. 

• Final classification layer. It is the only one with neurons totally connected with 
those of the last convolution layer, and it is endowed with a function of back-
propagation of the error on the convolution layers. In this way, the emergent 
property of a CNN during the training phase is that, both the classification level, 
and the convolutional levels of feature extraction learn together, so to make 
evolving in time the same multi-layered filtering operations (kernels). This is 
the adaptive filtering that characterizes the CNNs with respect to the perceptron, 
and that is the “secret” of the effectiveness of a CNN architecture.  

 
Figure 9. Intuitive block diagram of a CNN architecture (from [78, p. 523]). 

 
24 The formal definition of the convolution in mathematical analysis is the operation between two 
functions which consists in integrating the product between the first value and the second one, 
shifted of a given magnitude. Formally, given two functions f (t) and g (t) defined on the reals 
ℝ, the following function is defined as convolution of f and g:   

(𝑓𝑓 ∗ 𝑔𝑔)(𝑡𝑡) ≔ � 𝑓𝑓(𝜏𝜏)𝑔𝑔(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏 = � 𝑓𝑓(𝑡𝑡 − 𝜏𝜏)𝑔𝑔(𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞

∞

−∞
 

where (𝑡𝑡 − 𝜏𝜏) is the shifting interval. Where the translation is temporal, the convolution 
practically corresponds to the cross-correlation  operation. It explains, for example, in the 
visual system of the human brain, the role of the multiple crossings between the different 
nervous fibers from the cones and rods of the retina before converging into the optic 
nerve. The cross-correlation is effectively a measure of similarity between two signals, de-
pending on the temporal translation applied to one of them. In this way, the visual system 
is able, for example, to extract the feature of the geometric shape of an object simply by 
cross-correlating between two different frequencies (colors) of the light radiation re-
flected by adjacent zones of the surface of the object and detected in succession by the 
cones and rods of the retina. And in fact, the feature of the edges thus extracted becomes 
the input of the inner neurons of the famous “area 17” of the visual cortex, which distin-
guish between horizontal, vertical, and oblique shapes of the visual object. For this funda-
mental discovery David H. Hubel and Torsten Wiesel earned the 1981 Nobel Prize in Phys-
iology or Medicine. 
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Finally, the error measure for calculating recursively the gradient descent of the cost 
function in the supervised learning of a CNN architecture is generally the cross-entropy 
function. This is an alternative measure of logarithmic type to the more classical Eu-
clidean loss function, i.e., the so-called "mean square error” measure, used in the per-
ceptron and in the BP architectures25. 

B7. The “Deep-Belief” Neural Networks, the Unsupervised Machine 
Learning and its Relevance in Machine Ethics  

A fundamental component of the training phase of CNN stressed by all the Authors 
(see for instance, [78, pp. 535-551]) is the data preprocessing of the training and test 
sets (see note 21). This includes well established statistical techniques such as the data 
normalization and the data augmentation, with special care to the correct parameter 
initialization of the net. 

 A multilayer CNN model is indeed generally made up of millions or billions of 
parameters, so that the proper initialization of weights at the beginning of the super-
vised training process becomes essential to ensure, on the one hand, the rapid conver-
gence of the model, and on the other hand the accuracy of the result.  

Indeed, the simplest initialization technique of zeroing all weights is highly ineffi-
cient, so that generally the random initialization using casual matrices (i.e., using ele-
ments sampled from a Gaussian, or from uniform distributions, or from orthogonal dis-
tributions) is the normal choice. However, the best-performing initialization strategy of 
a supervised CNN relies on a second unsupervised ANN to give the CNN the initial 
weight values for its supervised training phase. Where we recall that “unsupervised 
learning” means a learning process in which the classes in which distributing the objects 
are not already defined or labeled, so that we speak of an “unlabeled learning process”. 

Among the different models of unsupervised NN, the more efficient ones are the so-
called deep-belief NN proposed by Robert Kozma, Marko Puljic, and Walter Freeman 
also because directly inspired to the unsupervised training of our brains modelled as 
dissipative systems [68]. Indeed, their unsupervised learning algorithm – giving the 
name to the model – is based on the principle of a progressive clustering of significant 
variables in the input dataset across the different layers of the network to reduce the 
number of the degrees of freedom (i.e., the dimensions of the probability space, in which 
a given probability distribution can variate) of the output probability distribution to 
those significantly corresponding to the degrees of freedom of the input probability 
distribution. A QFT version of the same approach to unsupervised learning – also be-
cause directly inspired by the same neurophysiological evidence – can be found in the 

 
25 Indeed, the cross-entropy measure generates the output within a probability distribution 𝑝𝑝,𝑦𝑦 ∈
ℝ𝑁𝑁, where p is the probability of each output category, y denotes the desired output, and N is 
the number of neurons in the output layer. The probability p of each output class i can therefore 
be obtained as 𝑝𝑝𝑖𝑖 = 𝑅𝑅𝑎𝑎𝑖𝑖 ∑ 𝑅𝑅𝑎𝑎𝑖𝑖𝑁𝑁

𝑘𝑘=1⁄ , where 𝑅𝑅𝑎𝑎𝑖𝑖 denotes the not normalized output from the previ-
ous layer of the network. Therefore, the measure of cross-entropy loss H can be defined as: 
𝐻𝐻(𝑝𝑝,𝑦𝑦) ≔ −∑ 𝑦𝑦𝑖𝑖 log 𝑝𝑝𝑖𝑖𝑖𝑖 , where 𝑖𝑖 ∈ [1,𝑁𝑁] ( [78, pp. 534-535]). 
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doubling of the degrees of freedom (DDF) principle system-environment, discussed in 
the Appendix A.   

For the aims of the present contribution, it is highly significant that suitable unsu-
pervised models of ML are used also in ME for correcting the biases hidden in the 
statistical distributions, on which the training phase of autonomous AI systems is per-
formed, with discriminatory “unfair” effects for the social minorities. The aim is, in-
deed, to make these models compliant with ethical criteria of fairness in ME, in the 
framework of a relational approach to a value-based deontic logic (see [23, 24]). The 
issue is well synthesized in the following quotation from a paper recently addressing 
the argument. 

Algorithmic assessment methods are used for predicting human outcomes in areas such as 
financial services, recruitment, crime and justice, and local government. This contributes, 
in theory, to a world with decreasing human biases. To achieve this, however, we need fair 
machine learning models that take biased datasets but output non-discriminatory decisions 
to people with differing protected attributes such as gender and marital status. Datasets can 
be biased because of, for example, sampling bias, subjective bias of individuals, and insti-
tutionalized biases. Uncontrolled bias in the data can translate into bias in machine learning 
models [89, p. 1]. 
[89] [89, p. 2]. 

 As we explain in the next Section and in § A1. of the Appendix A, and as we dis-
cussed already in [35], we also suggest an approach to satisfy farness criteria in ML 
models that, as fair as, concerning data pre-processing, are not implemented as ethical 
constraints on the ML optimization procedure. However, differently from the precedent 
one that proposes a supervised ML procedure “tuned by-hand” for learning the fair 
model, we proposed an unsupervised ML model to data preprocessing for automatically 
correcting – i.e., dynamically, without any “fine-tuning” of the variables by the pro-
grammer – the biases in the training dataset, and so granting a “fair” ML model. Our 
approach, indeed, applies the DDF principle just introduced as an unsupervised ML 
strategy of data preprocessing to implement the core of formalized Amartya Sens’s 
theory of fairness. Outstandingly, indeed, it uses mathematically the maximin principle 
(max of resources to minus advantaged) as a fair variable aggregation principle by 
which defining the degrees of freedom – i.e., the dimensions – of a “fair” social state 
space of equitable access to social/economic opportunities (favorable social states). 

Indeed, just for this usage of the maximin as a variable aggregation principle, Sen 
can define in his mathematically formalized Social Choice Theory (SCT) as we see in 
§ 3.2, an extended identity axiom between the spaces of social states of disadvantaged 
and advantaged groups, balanced into one only “fair” social state space of opportunity 
access to favorable social states. Now, also the DDF principle is physically a balancing 
principle between two spaces of probability distributions representing a system and its 
environment, granting, by a suitable “variable aggregation” in the resulting merged 
space, a “fair distribution” of the resources (free energy) among all the components of 
such a doubled system (see §A2. in Appendix A). Not casually, indeed the DDF char-
acterizes the unsupervised learning process of our dissipative brains interacting with 
their physical-social environment, modeled in the Fundamental Physics framework of 
dissipative QFT [64, 65].  
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Appendix C: On Sen’s transformation mapping of the set of 
individual states onto the set of social states 

Synthesizing Sen’s formal demonstration in [29, pp. 210-220], given the set X of indi-
viduals i, j,…, and the set H of social states x, y,…, and the Cartesian product 𝑋𝑋 × 𝐻𝐻 of 
all possible choices (that grows factorially with the number n of the individuals), to 
implement a fairness condition in the basal space of the individual 𝑖𝑖 ∈ 𝐷𝐷, where D is a 
subset of disadvantaged individuals in X, it is sufficient to satisfy the following condi-
tion. That is, to extend the ranking 𝑅𝑅𝑖𝑖 of welfare states among which i can exert her 
choice, to the extended ranking 𝑅𝑅�𝑖𝑖 also including the ranking 𝑅𝑅𝑗𝑗 of an individual 𝑗𝑗 ∉ 𝐷𝐷 
(non-disadvantaged individual), because in this ranking there is also the state x that is 
better than y for i.  
Formally, it means to impose the restriction of a one-to-one correspondence from the 
set of individuals H to H itself, such that 𝑖𝑖 = 𝜌𝜌(𝑗𝑗), where ρ is a transformation mapping 
the (set of choices of) a person j onto (the set of choices of) a person i. The restricted 
set (partition, set disjoint union, or coproduct) of all this one-to-one-correspondences 
in X can be denoted as 𝑇𝑇 ⊂ 𝑋𝑋 and justifies Suppes’ assertion that “x is more just than y 
according to person i”, 𝑥𝑥𝐽𝐽𝑖𝑖𝑦𝑦 in a restricted, and then computable way also when ex-
tended from two individuals – like in the Suppes’ case – to n individuals26. That is, 𝜌𝜌 
is computable in terms of the restricted relation 𝑥𝑥𝑂𝑂𝑖𝑖𝑦𝑦 ↔ ∃𝜌𝜌 ∈
𝑇𝑇: �∀𝑗𝑗: (𝑥𝑥, 𝑗𝑗) 𝑅𝑅�𝑖𝑖�𝑦𝑦,𝜌𝜌(𝑗𝑗)��. In other terms, given the transformation ρ, this justifies the 
person i in assessing that she prefers to be in the position x of someone, either j or i 
herself, than in the position of this same person in y. In other terms, Sen’s 𝑥𝑥𝑂𝑂𝑖𝑖𝑦𝑦 is the 
necessary and sufficient condition for justifying the consistency of the finitary comput-
ability of maximin principle of fairness in Sen’s SCT, for whichever number n of indi-
viduals.   
It is now possible for us to understand the statement of the extended identity axiom in 
SCT, as implementing the relational ethics principle of “extended sympathy” as nec-
essary and sufficient condition for using the maximin as a variable aggregation princi-
ple in SCT on an effectively fair, equitable basis. 
Axiom 1. (Axiom of identity). Each individual j in placing himself in the position of 
person i takes on the tastes and the preferences of i. That is, 

∀𝑥𝑥, 𝑦𝑦 ∈ 𝑋𝑋: �∀𝑖𝑖: �(𝑥𝑥, 𝑖𝑖) 𝑅𝑅�𝑖𝑖
𝜌𝜌(𝑦𝑦, 𝑖𝑖) ↔ ∀𝑗𝑗: (𝑥𝑥, 𝑗𝑗) 𝑅𝑅�𝑗𝑗

𝜌𝜌(𝑦𝑦, 𝑗𝑗)�� 
A stronger version of the Axiom 1 is the following “axiom of complete identity” iden-
tifying the rankings among all the persons belonging to the partition T, i.e.: 
Axiom 2. (Axiom of complete identity).  ∀𝑖𝑖, 𝑗𝑗:  𝑅𝑅�𝑖𝑖

𝜌𝜌 =  𝑅𝑅�𝑗𝑗
𝜌𝜌. 

 

 
26 Effectively, the number of the possible permutations in which a state x can be more just than y 
for n individuals grows as n!. Consider that, in terms of the DDF physical principle, Sen’s re-
striction corresponds to the reduction of the number of the degrees of freedom of the two distri-
butions to only those admitting the balancing principle of the minimization of the distance be-
tween a pair of states. That is, the minimization of the free-energy function (maximum entropy) 
between a pair of states (see §A2. In Appendix A). 



40 

It is evident that for making formally consistent in abstract mathematics Sen’s axioms 
of extended identity between the “basal spaces” of different social groups the topolog-
ical notion of equivalence by homotopy is required27. Not casually, this notion of ho-
motopic equivalence is at the basis of the emergent research field of the computational 
topology in TCS and then of the topological data analysis, recently applied fruitfully 
also to ML [32].      
On the one hand (see § A1. in Appendix A), this conclusion again emphasizes that the 
proper logic – in CT metalanguage – of Sen’s relational ethics is within (the topological 
interpretation of) Kripke’s modal relational semantics in terms of a coalgebra of NWF-
sets defined on Stone spaces for a modal BAO semantics [34]. In it, partitions (set dis-
joint unions or coproducts) of admitted (social) states can be defined as “rooted-trees” 
of Kripke structures of possible states, so that it is possible to justify in this formalism 
a particular implementation of the homotopic equivalence in computational topology 
in terms of the notion of bisimulation (symbol: ⇆) between Kripke’s structures/models 
(see [90] and [55, pp. 53-55]).  
Now, as we demonstrated elsewhere [66, 55], given that the properties of topological 
Stone spaces on which the algebra-subalgebras structure of a BAO semantics in logic, 
and the topological spaces on which the C*-subalgebras of Hilbert spaces in (quantum) 
physics are the same, it is possible to model a modal BAO semantics over the (topolog-
ical) coalgebraic structures of a dissipative QFT. In this case, indeed, the DDF – or 
“active mirroring” (quantum entanglement) system-thermal bath – acts as a (thermo-
)dynamic selection criterion of admissible sets, for the modal Boolean logic quantum 
computations of our “dissipative brains” [91].       
On the other hand, it is easy in the light of the precedent discussion to guess that, just 
as a physical counterpart of the maximin principle in economy for a fair distribution of 
resources is in the “fair distribution of energy” among the components of a complex 
dissipative system balanced with its thermal bath, so Sen’s extended identity axiom be-
tween different subjective basal spaces in SCS (𝑅𝑅𝑖𝑖,𝑅𝑅�𝑗𝑗), has in the DDF principle (𝐴𝐴, �̃�𝐴) 
its natural implementation (see § D2. in Appendix D). This can be used as the basis of 
an unsupervised quantum ML algorithm inspired to the dissipative QFT underlying 
brain network dynamics (see § B7. in Appendix B and [35]). Or – if we prefer to use 
the “first-person” jargon of the intentional language for expressing Smith’s “extended 
sympathy” principle (see § B1. in Appendix B and the connected diagram of cognitive 
sciences of Figure 4) –, only by mirroring “myself” in “you” so to be each “the double” 
of the other, we can constitute a sympathetic “we”. 

 
27 Intuitively, in CT metalanguage, two different paths sharing the same endpoints x,y can be said 
“homotopically equivalent” if they can be continuously deformed into each other. More for-
mally, given two topological spaces X and Y, a homotopy equivalence between X and Y is a pair 
of continuous maps 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 and 𝑔𝑔:𝑌𝑌 → 𝑋𝑋 such that 𝑔𝑔 ∘ 𝑓𝑓 is homotopic to the identity map or 
reflexive morphism id𝑥𝑥 and 𝑓𝑓 ∘ 𝑔𝑔 is homotopic to id𝑦𝑦. If such a pair exists, then X and Y are 
said to be homotopy equivalent, or of the same homotopy type. Significantly, a homeomorphism 
or isomorphism between topological spaces, is a special case of homotopy equivalence, in which 
𝑔𝑔 ∘ 𝑓𝑓 is equal (and not simply homotopic) to the identity map id𝑥𝑥 and 𝑓𝑓 ∘ 𝑔𝑔 is equal to id𝑦𝑦. 
Therefore, if X and Y are homeomorphic, then they are homotopy-equivalent, but the opposite 
is not true.  
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Appendix D: A QFT Inspired Unsupervised Machine Learning 
Algorithm  

D1.  The Operator Algebra from Physics to Logic and Computer Science 

In other contributions strictly related with the present one [66, 35, 39], we discussed at 
length the possibility of a fruitful modeling of the intentional behavior in human and 
artificial agents – strictly related to a “value based” deontic logic –, using the dissipative 
quantum field theory (QFT) approach to brain (thermo-)dynamics and to theoretical 
computer science (TCS). This modeling must be developed in the framework of a top-
ological approach to modal Boolean logic [34], based on the momentous Marshall 
Stone’s Representation Theorem of Boolean Algebras [56], from which a BAO directly 
derives [57, 58] that can be extended to modal BAOs [43, 44, 91], using the unifying 
framework of the Category Theory (CT) metalanguage (see [92] for a wider discus-
sion).  

What is fundamental for guessing, at least, the core of this passage from physics to 
logic, it is sufficient to recall Stone’s powerful mathematical notion of field of sets, 
effectively a 𝜎𝜎-algebra, that is a probability space in which a metric is defined, and that 
is typical of the physical system model theory, on which a BAO can be directly defined. 
All this can be resumed in the motto: operator algebra from physics to logic, disclosing 
an incredible panorama of development for formal philosophy (formal ontology, formal 
epistemology, formal ethics), on the one hand, and for computational topology in TCS, 
on the other hand. Included the actual growing discussion about the development of 
topological methods of statistical data management and of ML [32]. See also [55] for 
a wider discussion of all the theoretical passages just sketched.  

CT, indeed, is able to unify in the same axiomatic framework of the algebraic (top-
ological) logic of operator algebras, both the mathematical logic of the natural sciences 
– of physics, before all –, and the modal logic of the philosophical disciplines [59, 60, 
92, 34], the deontic logic of ethics included, with evident consequences for TCS and 
also for our problem of the ethical accountability of the AI algorithms and systems. 
The core of the CT logic (semantics) in its application to TCS is, indeed, the possibility 
of interpreting the meaning function ⟦∙⟧, i.e., the function mapping a formula 𝜑𝜑 of the 
propositional calculus of a BAO [57, 58] over its extension ⟦𝜑𝜑⟧ “making true” 𝜑𝜑, not 
on a set-subset ordering like in standard set-theoretic semantics, but (primarily)28 on a 
complex algebra 𝔸𝔸+, i.e., an algebra-subalgebras structure, so to satisfy the motto of 
CT logic, “meaning is a homomorphism” between algebraic structures [34]. 

Particularly, in Kripke’s modal relational semantics in its algebraic (topological) in-
terpretation, it is possible to justify: 

1. A HOL semantics quantifying over all the truth valuation functions V for proposition 
p over world-states w: ∀𝑉𝑉(𝑝𝑝,𝑤𝑤).  

 
28 Indeed, by the application of the so-called “forgetful functor” it is always possible in CT map-
ping the category of monoids (one-object algebraic structures) Mon on the category of (pointed) 
sets Set, “forgetting” the underlying algebraic structure [94].  
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2. Or a FOL semantics quantifying over all the possible states w  of the world related 
with one state, i.e. over a partition (set disjoint union or coproduct) of the universe 
↾ (𝑊𝑊). That is: ∀𝑤𝑤(𝑉𝑉(𝑝𝑝,𝑤𝑤) | 𝑤𝑤 ∈ ↾ (𝑊𝑊) [90].  

Indeed, in the CT metalanguage, Kripke modal relational semantics is defined over 
a coalgebra of trees of NWF-sets defined on Stone spaces [93]. More generally, by 
using the so-called “Vietoris transformation” as a selection criterion of admissible sets 
(set partitions or coproducts), it is possible justifying in CT, the dual equivalence be-
tween the category of coalgebras defined onto topological Stone spaces, and the cate-
gory of modal Boolean algebras for the double contravariant application of the same 
“Vietoris functor” 𝒱𝒱/𝒱𝒱∗, i.e., 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒(𝓥𝓥) ≃ 𝐌𝐌𝐁𝐁𝐀𝐀𝐒𝐒𝐒𝐒(𝓥𝓥)∗ [63, 93]. Indeed, the core of 
a coalgebraic semantics of a Boolean algebra in CT logic is the Stone duality as a par-
ticular case categorical duality. Indeed, given the dual equivalence between a given 
category 𝒞𝒞 and the opposed category 𝒞𝒞op, a statement 𝛼𝛼 defined on 𝒞𝒞 is true only and 
only if the opposed statement 𝛼𝛼op defined on 𝒞𝒞op is also true (see [94] for more details). 
In this sense, it is possible to develop a relation ethics, that is, a value-based deontic 
logic founded on a deontic interpretation of Kripke’s modal relational semantics.  

The connection with the mathematical formalism of QFT in the framework of the 
CT metalanguage is double, as we anticipated in § 3.2. On the one hand, the topologies 
of the Stone spaces of the momentous “Stone Representation Theorem for Boolean Al-
gebras” [56] – on which the extension of the operator algebra approach to Boolean logic 
is based in TCS [57, 58] – are the same of the topological spaces on which the C*-
(sub)algebras of Hilbert spaces are defined, in the operator algebra formalism of QM 
and QFT [95, 67]. On the other hand, the other strong connection is based on the role 
of the coproducts (disjoint sums) and then of the coalgebras in quantum physics – ef-
fectively the coalgebras of the Hopf bi-algebras (algebra-coalgebra), systematically 
used in the calculations over lattices of quantum numbers, both in QM and QFT29. More 
precisely, coproducts play an essential role in QFT applied to dissipative systems mod-
elled in far-from-equilibrium conditions because passing through different phases [96]. 
This interpretation inaugurated by the pioneering works of N. Bogoliubov [97, 98] and 
H. Umezawa  [99, 100, 101], is the Fundamental Physics of dissipative systems, both 
in the relativistic quantum cosmology, and in the condensed matter physics, chemical 
and biological systems included [102]. The Bogoliubov transform, indeed, allows to 
map between different phases of the bosons and the fermions quantum fields, making 
QFT – differently from QM and from QFT in its Dirac’s “second quantization” inter-
pretation – able to calculate over phase transitions. One of the main differences be-
tween these two QFT modeling is that while the coproducts for calculating the total 
energy of a superposition quantum state are defined on a commutative algebraic footing 
because of the interchangeable character of the terms (superposed particles) of the 
quantum state, this commutativity does not hold in the dissipative case. In dissipative 
quantum systems  this commutativity does not hold, because the two terms of the 
coproduct refer to the system and the thermal bath energy contributions that does not 
interchange each other and determining a far-from-equilibrium balanced quantum 

 
29 Effectively the Hopf coproducts are systematically used in QFT for calculating the total energy 
(sum) of n particles superposed in the same quantum state [105]. 
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state. In this case, we are obliged to speak about non-commutative q-deformed Hopf 
coalgebras, where q is a thermal parameter, strictly related with the 𝜃𝜃-angle of the Bo-
goliubov transform [102].  

All this allows the possibility in CT logic to demonstrate the dual equivalence be-
tween the category of the non-commutative (q-deformed) Hopf Coalgebras on Stone 
Spaces 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 of the dissipative QFT where the Bogoliubov transform in phsyics 
acts like the Vietoris transform in logic as a (dynamic) selection criterion of admissible 
sets for the coalgebraic semantics of the related BAO, and the category of the non-
commutative (“skew”) modal Boolean algebras with operators MBAlg for the contra-
variant application of the Bogoliubov functor ℬ, i.e., 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒(𝓑𝓑) ≃ 𝐌𝐌𝐁𝐁𝐀𝐀𝐒𝐒𝐒𝐒(𝓑𝓑)∗ [66, 
55].  

This, on the one hand, offers an extension to quantum physics of the powerful and 
successful Jan Rutten’s interpretation of the category of coalgebras as a general theory 
of dynamic and computational systems, both interpreted as labelled state transition sys-
tems (LTS) [103]. According to this theory, by applying the dual categorical equiva-
lence algebras-coalgebras for the contravariant application of the same functor of CT 
logic, the dynamics of the physical system in which a Boolean logical calculus is im-
plemented, as far as coalgebraically modelled, directly gives the semantics of the cor-
respondent Boolean logical calculus in which the program is written.  

On the other hand, the non-commutative Hopf coalgebras (coproducts), through the 
powerful construction of the doubling of the degrees of freedom (DDF: see [102] and 
more synthetically [70] for a formal justification), satisfy a dynamic criterion of choice 
of admissible sets for justifying in CT logic a coalgebraic relational semantics of a 
modal Boolean algebra for Kripke models. Moreover, one of the most successful appli-
cations of dissipative QFT is for giving the Fundamental Physics of the mammalian 
brain dynamics, interpreted as a dissipative system (the “dissipative brain”) [104, 64, 
65]. This justifies a possible solution of the long-lasting problem in neurosciences of 
the “long-term memory traces”, in terms of the coherent oscillatory behavior of large 
arrays of neurons also reciprocally very distant, in different areas of the mammalian 
brain and therefore that cannot be justified in terms of signals using synaptic paths.  
This macroscopically measurable behavior can have its only possible microscopic 
physical justification in terms of the long-range correlations (entanglement) of the 
quantum fields of the molecular components of the brain neuropile. These phase coher-
ence neural domains, indeed, can coexist without interferences in the same ground state 
or “minimum energy condition” (“quantum vacuum condition (QV))” of a balanced 
state of the quantum fields, according to the powerful QFT construction of the QV-
foliation |0(𝜃𝜃)⟩𝒩𝒩 [102, 66]. This suggests the possibility of a dynamic deep learning 
strategy in artificial neural networks (ANN) and in AI systems both in the “supervised” 
[105], and in the “unsupervised” cases [66].   

Moreover, from the cognitive neuroscience standpoint, all this demonstrates that 
thermal QFT is the Fundamental Physics of the mind conscious intentionality [51]. This 
foundation is consistent with Antonio Damasio’s suggestion of interpreting the notion 
of homeostasis with the environment, based on complex non-linear self-regulation pro-
cesses in biological and neural systems, as the physical basis of “individual” and 
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“collective” first-person intentionality [106, 40], in its third-person or “observational” 
scientific modelling (biosemiotics) [39] (see § B1. in Appendix B and Figure 4). 

D2.  Applications of the DFF in QFT Unsupervised Learning  

In the theoretical framework of thermal QFT for dissipative systems shortly discussed 
before, we sketch here a machine learning algorithm inspired to the DDF principle in 
dissipative QFT systems, in an optical ANN implementation, using the standard tools 
of the correlation interferometry, just as, for instance in the applications discussed in 
[107, 108]. In our case, indeed, the DDF principle can be applied in a recursive way, 
by using the mutual information as a measure of phase distance, like an optimization 
tool of error minimization of the input-output mismatch. In this case, indeed, the input 
of the net is not on the initial conditions of the net dynamics but on the boundary con-
ditions (thermal bath) of the system. Just as it happens in the “deep learning” of natural 
brains, modelled as dissipative brains “locked” onto their environment variations (data 
streaming). In both cases, indeed, we are faced with the macroscopic phenomenon of a 
dynamic phase locking, having at the microscopic level in the DDF principle of quan-
tum entanglement between the degrees of freedom 𝐴𝐴 of the system dynamics, and the 
degrees of freedom �̃�𝐴 of its environment dynamics its proper explanation.   

Indeed, inspired by the modeling of natural brains as many-body systems, the QFT 
dissipative formalism has been used to model ANNs [105, 109], also in the CT frame-
work of a coalgebraic logic applied to TCS [66]. The QFT approach to brain studies 
was originally proposed by Ricciardi and Umezawa in 1967 [110], and extended in 
1995 to include dissipative dynamics by Vitiello [111, 91]. The mathematical formal-
ism of QFT (details in [102]) requires that for open (dissipative) systems, like the brain 
which is in a permanent “trade” or “dialog” with its environment, the degrees of free-
dom of the system (the brain), say 𝐴𝐴, need to be “doubled” by introducing the degrees 
of freedom �̃�𝐴 describing the environment, according to the coalgebraic scheme: 𝐴𝐴 →
𝐴𝐴 × �̃�𝐴. One is thus led to consider the deformed Hopf algebra, out of which Bogoliubov 
transformations involving the 𝐴𝐴, �̃�𝐴 modes are derived. These transformations induce 
phase transitions, i.e., transitions through physically distinct spaces of the states de-
scribing different dynamical regimes in which the system can sit. The brain is thus con-
tinuously undergoing phase transitions (criticality) under the action of the inputs from 
the environment (Ã modes). The brain activity is therefore the result of a continual bal-
ancing of fluxes of energy (in all its forms) exchanged with the environment. The bal-
ancing is controlled by the minimization of the free energy at each step of time evolu-
tion. Since fluxes “in” for the brain (A modes) are fluxes “out” for the environment (Ã 
modes), and vice-versa, the Ã modes are the time-reversed images of the A modes, they 
represent the Double of the system [91].  

From the TCS standpoint this means that the system satisfies the notion of a partic-
ular type of automaton, or Labelled State Transition Machine (LTM). I.e., the so-called 
infinite-state LTM coalgebraically interpreted, and used for modelling infinite streams 
of data [103]. Effectively, also the QFT many-body systems are characterized by an 
infinite number of degrees of freedom. However, the doubling of the degrees of 
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freedom (DDF) �𝐴𝐴, �̃�𝐴� just introduced and characterizing a dissipative QFT system acts 
recursively as a dynamic selection criterion of admissible because balanced states (min-
imum of the free energy), and then as an unsupervised ML algorithm. Effectively, it 
acts as a mechanism of “phase locking” between the data flow (environment) and the 
system. Moreover, each system-environment entangled (doubled) state is univocally 
characterized by a dynamically generated code, or dynamic labelling as we see imme-
diately. This means that this system is characterized by an “unlabeled” (memory re-
cording) process, and these two properties – computing on data streaming, and per-
forming an unsupervised learning – are the two main differences with the supervised 
learning algorithms illustrated in Appendix B.     

In the model, indeed, an input triggers the spontaneous breakdown of the symmetry 
(SBS) of the system dynamical equations. As a result of SBS, massless modes, called 
Nambu-Goldstone (NG) modes, are dynamically generated [112, 113]. They are boson 
quanta of long-range correlations among the system elementary components and their 
coherent condensation in the system ground state (the least energy state or “vacuum”) 
describes the recording of the information carried by that input. Coherence denotes that 
the long-range correlations are not destructively interfering. Their macroscopic mani-
festations are the observable ordered patterns characterizing the system behavior. This 
is controlled by the order parameter, describing the degree and the specific nature of 
ordering. It is a classical field since, due to coherence, it does not depend on quantum 
fluctuations and the system is said to be a macroscopic quantum system, in the sense 
that its macroscopic dynamics and behavior is not derivable without recourse to the 
quantum dynamics.  

The memory state turns out to be a squeezed coherent state:|0(𝜃𝜃)⟩ = ∑ 𝑤𝑤𝑗𝑗(𝜃𝜃)|𝑤𝑤𝑗𝑗�𝑗𝑗  
to which Glauber information entropy measure Q directly applies [114], with |𝑤𝑤𝑗𝑗� de-
noting states of 𝐴𝐴 and �̂�𝐴 pairs, θ is the time- and temperature-dependent Bogoliubov 
transformation parameter. |0(𝜃𝜃)⟩ is, therefore, a time-dependent state at finite temper-
ature; it is an entangled state of the modes 𝐴𝐴 and �̂�𝐴, which provides the mathematical 
description of the unavoidable interdependence between the brain and its environment. 
Coherence and entanglement imply that quantities relative to the A modes depend on 
corresponding ones of the Ã modes. From the CT logic standpoint, this means that a 
“truth evaluation function” is built-in the �𝐴𝐴, �̂�𝐴� system.  

More analytically, The Bose-Einstein distribution function of the 𝐴𝐴k and �̃�𝐴k modes 
is determined by the minimization of the free energy: 𝑁𝑁k = 1 �𝑅𝑅𝛽𝛽𝛽𝛽 − 1�⁄ , with Nk the 
number of condensed A modes, 𝛽𝛽 = 1 𝑘𝑘𝐵𝐵𝑇𝑇⁄ , 𝑘𝑘𝐵𝐵 the Boltzmann constant, 𝜔𝜔 = 𝜔𝜔k  the 
energy (and similarly for 𝑁𝑁�k). For simplicity, we write 𝜃𝜃 = 𝜃𝜃(𝑡𝑡,𝛽𝛽(𝑡𝑡)),  omitting de-
pendence of 𝜃𝜃 on time 𝑡𝑡 and temperature 𝑇𝑇. The collection �𝑁𝑁k,𝑁𝑁�k;  𝑁𝑁k − 𝑁𝑁�k =
0, for any k� acts as a code (a dynamically generated label) associated with the infor-
mation printed by the condensation of the �𝐴𝐴k, �̃�𝐴k� in |0(𝜃𝜃)⟩. 

In the presence of fermion fields, SBS also leads to the formation of NG boson con-
densation modes, with their Bose-Einstein distribution functions. The fermion modes 
are also doubled and |0(𝜃𝜃)⟩ is the tensor product of the (Bogoliubov transformed) fer-
mion states and of the NG boson states. The fermion number in the fermion state is 
given by the Fermi-Dirac distribution function: 𝑁𝑁𝑁𝑁k = 1 �𝑅𝑅𝛽𝛽𝛽𝛽 + 1�⁄ , for any k, and 
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similarly for the tilde-fermion mode. Here, as usual, 𝜔𝜔 = 𝜔𝜔k = 𝜀𝜀k − 𝜇𝜇, with 𝜔𝜔 = 𝜔𝜔k =
𝜀𝜀k the energy and 𝜇𝜇 the chemical potential.  

We stress that in the QFT dissipative formalism the implicit discreteness in the on-
off (or 0/1) algebra, although it may be present at a microscopic level – e.g., in the 
fermion and dipole quantum numbers, etc. – it is dynamically converted (through the 
dynamical rearrangement of symmetry) into a continuous interval [0,1] of probability 
values. In fact, from the Bose-Einstein and Fermi-Dirac distributions, one can derive 
the sigmoid activation function 𝜎𝜎. For example, in the fermion case, assuming that  
𝑁𝑁𝐹𝐹k = 1 at 𝑇𝑇 = 0 and energy 𝜀𝜀k < 𝜇𝜇,  one finds that the change Δ𝑁𝑁𝐹𝐹k due to thermal 
effects is given by: Δ𝑁𝑁𝐹𝐹k = 1 − 1 �𝑅𝑅𝛽𝛽𝛽𝛽 + 1�⁄ = 1 �𝑅𝑅𝛽𝛽𝛽𝛽 + 1�⁄ = 𝜎𝜎, the sigmoid func-
tion, indeed (formal details in [105, 109]). In the boson case, considering that 𝑁𝑁k =
sinh2𝜃𝜃 and 𝑅𝑅−𝛽𝛽𝛽𝛽 = tanh2𝜃𝜃, it is also not difficult to describe the system response in 
terms of the sigmoid function 𝜎𝜎. However, we must emphasize that in the present case 
the value (“slope”) of 𝜎𝜎 is not “put by hand”, but like the “labels” 𝑁𝑁k,𝑁𝑁𝐹𝐹k depends on 
the system dynamics, as the strict relationship between these two magnitudes in the 
defining formulas above demonstrates. 
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